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The first example of the synthesis of planar chiral (1,3-dis-
ubstituted arene)Mn(CO)3

+ cations (3) has been demon-
strated by a reaction of (p-cresol)Mn(CO)3

+ with KOBut

followed by addition of nucleophiles and subsequent quench-
ing with electrophiles in the presence of (S)-binaphthol in
CH2Cl2.

Planar chiral transition-metal p-complexes of ortho- and meta-
disubstituted arenes have emerged as useful starting materials in
organic synthesis and as potential ligands for asymmetric
catalysis. The planar chirality enables new stereogenic centers
to be formed with high stereoselectivity.1 In this regard,
tricarbonylchromium(0) complexes of aromatic compounds
have received much attention.2 Optically active arene chro-
mium complexes have been obtained through resolution via
diastereoselective synthesis and by enantioselective meth-
ods.3–7

The reaction of organotransition metal complexes with
nucleophiles offers a powerful method in the formation of
carbon–carbon bonds. When an arene is bound to the cationic
Mn(CO)3

+ fragment, it becomes substantially more electro-
philic than in the neutral (arene)Cr(CO)3 complexes.8 However,
in spite of their potential usefulness, there have been no reports
on the synthetic methods of planar chiral (arene)Mn(CO)3

+

complexes from achiral arenes, even though the respective
groups of Pearson and Miles9 reported the synthesis of chiral h5-
dienyl manganese complexes by a chiral auxiliary-directed
asymmetric additions to arene–manganese tricarbonyl com-
plexes. Herein we describe our initial study of the synthesis of
planar chiral manganese complexes of 1,3-disubstitued arenes
from a readily available p-cresol manganese complex. To the
best of our knowledge, this is the first synthesis of planar chiral
1,3-disubstituted arene manganesetricarbonyl complexes.

Treatment of (p-cresol)Mn(CO)3
+ with KOBut in THF

afforded oxocyclohexadienyl manganese complex 1 [eqn.
(1)].

(1)

Complex 1 was easily attacked by nucleophiles such as
Grignard reagents and alkyllithium.10 Nucleophiles exclusively
attacked the terminal positions of the cyclohexadienyl ring.

The external ligand-controlled enantioselective addition of
organometallic reagents to prochiral molecules is a powerful
tool in asymmetric methodology. Thus, it was expected that the
nucleophile addition to a prochiral manganese complex 1 in the
presence of external chiral ligand would induce asymmetry in

the sequential nucleophile/electrophile addition to 1 [eqn.
(2)].

(2)

Thus, we screened several chiral ligands in the nucleophile
addition reaction to 1 (Table 1). As we expected, planar chiral
(h5-cyclohexadienyl)Mn(CO)3 complexes 2 were obtained in
reasonable to high yields. The yields were sensitive to the chiral
ligand and reaction medium, the ee values were highly
dependent upon them, and the S or R configuration was also
dependent upon the chiral ligand. Generally, chiral diol ligands
were superior to chiral N,O- and N,N-chelating ligands. The
best result was obtained when the reaction was conducted in the
presence of (S)-binaphthol in CH2Cl2.

Next we investigated the reaction with various nucleophiles
(Table 2). When an electron-withdrawing group such as p-CF3
was introduced to a phenyl ring, no reaction was observed,
presumably due to the low nucleophilicity of the resulting

† Electronic supplementary information (ESI) available: experimental
section. See http://www.rsc.org/suppdata/cc/b2/b201341j/

Table 1 The results of chiral induction with various ligandsa

Entry Ligand Solvent Yieldb (%) Eec (%) Config.d

1e la THF 85 7 R
2 lb THF 61 24 R
3 lc THF 95 35 S
4 lg THF 82 54 S
5 lc CH2Cl2 51 50 R
6 ld CH2Cl2 67 35 S
7 le CH2Cl2 65 13 R
8 lf CH2Cl2 70 9 R
9 lg CH2Cl2 78 95 S
a Reaction conditions: 1.5 equiv. ligand and 4.5 equiv. PhMgBr, 278 °C, 18
h. b Isolated yields. c Determined by HPLC using a Chiralcel OD column.
d The absolute configuration was determined by X-ray analyses of 3a and
3b. e 1.5 equiv. ligand and 1.5 equiv. PhMgBr used.
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Grignard reagent. Introduction of an electron-donating group
such as p-methyl and p-methoxy groups to a phenyl ring led to
a decrease of the ee value to 90 and 76%, respectively. When a
bulky nucleophile such as 2-naphthyl Grignard reagent was
used, the ee value fell to 66%. Interestingly, treatment of 1 with
2-thienyl magnesium bromide gave 2b in 68% yield with a high
enantioselectivity 98%.

Other nucleophiles such as PhMgBr/CuI, PhLi and PhLi/CuI
were also screened. When PhMgBr/CuI was used as a
nucleophile, the ee value was 48%. In the case of phenyllithium,
the ee value (14%) was quite poor. When phenyllithium cuprate
was used, almost no asymmetric induction occurred. When
Et2Zn was used as a nucleophile, no reaction was observed.

To generate planar chiral (1,3-disubstituted arene)Mn(CO)3
+

cations (3) while retaining optical purity (see ESI†), complexes
2 were treated with HBF4 [eqn. (3)].

(3)

High yields of 3 were obtained with high enantioselectivities.
Careful crystallization of 3a and 3b from diethyl ether/
nitromethane gave single crystals. The molecular structures of
3a and 3b were determined by X-ray diffraction. They have
very similar unit cell dimensions and the X-Ray crystal
structures are quite similar to each other. Thus only the X-ray
crystal structure of 3b is presented in Fig. 1,11 which clearly
shows that nucleophile addition occurs preferentially at the
meta position of the methyl group and the absolute configura-
tion is S.

In general, ortho positions are more easily influenced by a
nearby chiral auxiliary than meta positions. Therefore, most
auxilliary-controlled asymmetric reactions provide planar chiral
1,2-disubstituted arene transition-metal complexes, sometimes,
with excellent results. In our reactions, chiral induction

occurred at one of the two ortho positions of the ketone group
of (oxocyclohexadienyl)Mn(CO)3 to yield 2 and the acid
treatment of 2 generated the planar chiral 1,3-disubstituted
arene manganese tricarbonyl cations which could not be
obtained by the other methods.

In conclusion, we have demonstrated the first synthesis of
planar chiral manganesetricarbonyl complexes of 1,3-dis-
ubstituted arenes starting from a readily available achiral (p-
cresol)Mn(CO)3

+ cation. Future work will be directed at
applying this chemistry to other transition metal complexes of
p-substituted phenols as well as studying the synthetic applica-
tion of this method.
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Table 2 The results of chiral induction with various nucleophilesa

Entry RMgX Product Yieldb (%) Eec (%) Config.

1 4-CF3C6H4 2a n.r. — —
2 2-Thienyl 2b 68 98 S
3 Ph 2c 78 95 S
4 4-MeC6H4 2d 75 90 S
5 4-MeOC6H4 2e 65 76 S
6 1-Naphthyl 2f 70 66 S
7 Bun 2g 75 67 S
a Reaction conditions: 1.5 equiv. (S)-binaphthol, 4.5 equiv. nucleophile,
278 °C, 18 h in CH2Cl2 b Isolated yields. c Ee was determined by HPLC
using a Chiralcel OD column.

Fig. 1 Crystal structure of 3b.
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