Rhodium-catalyzed approach to Mannich-type products using aldimine, α,β -unsaturated ester, and hydrosilane†

Takako Muraoka, Shin-ichi Kamiya, Isamu Matsuda* and Kenji Itoh

Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan. E-mail: matsudai@apchem.nagoya-u.ac.jp; Fax: 81-52-789-3205; Tel: 81-52-789-5113

Received (in Cambridge, UK) 20th March 2002, Accepted 1st May 2002 First published as an Advance Article on the web 16th May 2002

A rhodium-catalyzed method for the synthesis of β -amino esters was accomplished in a one-pot procedure from aldimine, α,β -unsaturated ester and hydrosilane.

Mannich-type reactions of an aldimine with an enolate component are some of the most important and versatile tools to construct $\beta\text{-amino}$ carbonyl compounds. These reactions provide useful routes for the synthesis of $\beta\text{-amino}$ esters which are useful as the immediate precursors of $\beta\text{-lactams}$ and $\beta\text{-amino}$ acids. Recent patterns of these reactions are categorized as the combination of aldimines and enoxysilanes with the assistance of some types of Lewis acid, 2,3 though some exceptions have been reported. The advantages for the use of enoxysilanes as a nucleophile are widely accepted, however, some troublesome procedures are required for their isolation in sufficient purity. 5

On the other hand, the transition-metal-catalyzed carboncarbon bond forming reaction is regarded as one of the most convenient and facile tools for constructing a designed molecule in the past decades.⁶ In particular, it is fascinating that several bonds are formed in an orderly manner in a one-pot reaction of more than three starting substrates under almost neutral conditions.⁷ We have found that some types of rhodium complex enable multi-component couplings including a hydrosilane as a starting component.8 In these reactions, some have indicated that rhodium enolate plays an important role as a key intermediate in these multi-component couplings. The formation of a rhodium enolate is elucidated by the insertion of an α,β-unsaturated carbonyl compound into the Rh-H bond generated by the oxidative addition of a hydrosilane to a low valent rhodium metal. The resultant enolate possesses sufficient nucleophilicity to attack an appropriate electrophile. 8a,b,o Along this line, we attempted to design a facile route to β -amino esters (Scheme 1). We report herein a rhodium-catalyzed method to give a Mannich-type product from the reaction of an aldimine with an α,β -unsaturated ester and a hydrosilane.

First of all, a CH_2Cl_2 solution containing aldimine ${\bf 1a}$, methyl acrylate (2), diethylmethylsilane (3), and 1 mol% of $[Rh(cod)(PPh_3)_2]OTf$ (${\bf 4a}$, cod = cycloocta-1,5-diene) was heated for 5 h at 45 °C to afford the *N*-diethylmethylsilyl- β -amino ester, ${\bf 5a}$, corresponding to ${\bf 6a}$. Protodesilylation of ${\bf 5a}$ in acidic aqueous EtOH afforded the β -amino ester ${\bf 6a}$ in 81% yield as a mixture of two diastereomers (syn: anti = 46:54, entry 1 in Table 1). The structure of ${\bf 6a}$ was assigned on the basis of its 1H and ^{13}C NMR, IR, and combustion analysis. This three-component coupling of ${\bf 1a}$, ${\bf 2a}$, and ${\bf 3a}$ proceeded incompletely

† Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b202773a/

even in the presence of 1 mol% of 4a when the reaction was conducted for 24 h at 25 °C (entry 2 in Table 1). In addition to 6a (31%), TsNH₂ was obtained in 40% yield after chromatographic purification of the crude mixture. Since an aldimine 1a is immediately hydrolyzed in aqueous EtOH to afford TsNH₂ and benzaldehyde, the concomitant formation of TsNH2 reflects the relative quantity of aldimine 1a remaining intact under the given reaction conditions. A neutral and zero-valent rhodium complex, Rh₄(CO)₁₂ (4b), also showed a similar catalytic efficiency for this Mannich-type reaction, though more vigorous conditions were required for the complete conversion of 1a (entry 3 in Table 1). The yield of **6a** increased dramatically in the reaction catalyzed by $[Rh(cod)\{P(OPh)_3\}_2]OTf(4c)$ under conditions similar to the reaction using **4a** (entry 5 in Table 1). The solvent used for this reaction significantly affected both the rate and the product yield (entries 5, 7, and 8 in Table 1). These results suggest that CH2Cl2 is the solvent of choice in the reactions using 4c as the catalyst precursor. In contrast, this coupling reaction gave a sluggish result when a mixture of $[Rh(dppe)Cl]_2$ and AgOTf (4d, dppe = 1,2-bis(diphenylphosphino)ethane) was used as a catalyst precursor instead of 4c (entry 9 in Table 1). Thus, it is deduced that the best result for this Mannich-type transformation is obtained by the combination of 4c as the catalyst precursor and CH₂Cl₂ as the solvent.

On the basis of the preliminary information, several types of aldimines (1) were subjected to the present three-component coupling in the presence of 1 mol% of the rhodium(1) catalyst. Selected results are summarized in Table 2. The reactivity of 1 for this reaction was significantly affected by the structure and electronic properties of both R¹ and R². The 4-methylbenzene-sulfonyl group on the imino-nitrogen showed a remarkable influence on increasing the yield of 6 in comparison with the

Table 1 Rhodium-catalyzed Mannich-type reaction of aldimine ${\bf 1a}$ with ${\bf 2}$ and ${\bf 3}^a$

Entry	Catalyst precursor ^b	Solvent	Conditions °C/h	Yield of 6a ^{cd} (syn:anti)	$TsNH_2$ (%) e
1	4a	CH ₂ Cl ₂	45/5	81 (46:54)	_
2	4a	CH_2Cl_2	25/24	31 (48:52)	40
3	4b	C_6H_6	85/88	82 (65:35)	_
4	4b	C_6H_6	25/24	40 (53:47)	49
5	4c	CH_2Cl_2	45/6	96 (32:68)	_
6	4c	CH_2Cl_2	25/21	69 (44:56)	—
7	4c	THF	70/28	78 (39:61)	—
8	4c	C_6H_6	85/69	92 (47:53)	—
9	4d	CH_2Cl_2	25/24	28 (60:40)	27

 a A mixture of ${\bf 1a}$ (1 mmol), ${\bf 2a}$ (2 mmol) and ${\bf 3}$ (2 mmol) in 2 ml of solvent was added to a solution (4 ml) of ${\bf 4}$ (1 mol% for ${\bf 1a}$) and the resulting mixture was then stirred under the conditions shown above. b ${\bf 4a}$: Rh(cod)(P-Ph₃)₂]OTf, ${\bf 4b}$: Rh₄(CO)₁₂, ${\bf 4c}$: [Rh(cod){P(OPh)₃}₂]OTf, ${\bf 4d}$: [Rh(dppe)Cl]₂ + 2 AgOTf. c The ratio of the two diastereoisomers was determined by 1 H NMR analysis. d Isolated yield. e The yield of recovered TsNH₂ after chromatographic purification.

other aldimines derived from benzaldehyde (Table 1 and entries 1–5 in Table 2), β-Amino esters (**6b–e**) were obtained in modest yields from the corresponding aldimine (entries 2–5 in Table 2). N-Benzyl-N-2-methoxyphenylamine (7e, 15% based on the starting 1e) was isolated in addition to the expected product 6e (60%) when 1e was reacted with 2 and 3 even in the presence of the less active catalyst, 4a (entry 5 in Table 2). The formation of 7e suggests that there is another path catalyzed by 4, i.e., hydrosilylation, to consume 1e in a one-pot reaction of 1e, 2 and 3. Furthermore, a similar three-component coupling was tested using several aldimines derived from the condensation between TsNH₂ and other aldehydes (entries 6–10 in Table 2). The presence of a methoxy group at the *ortho*-position on the phenyl ring of R¹ affects the reaction rate to form **6**. The reaction of N-(2-methoxybenzylidene)-4-methylbenzenesulfonamide completed within 4 h afforded the corresponding β-amino ester (6h) in 93% yield (entry 8 in Table 2). A similar effect was expected when an aldimine possessing an ortho-hydroxy group on the phenyl ring of R¹ is employed in place of **1h**, though a longer reaction time was required for the complete consumption of 1i (entry 9 in Table 2). It is noteworthy that nucleophilic attack on 1j selectively proceeds in a 1,2-fashion to give 6j in 56% yield (entry 10 in Table 2). In contrast to these observations, the corresponding 6 was not obtained at all in the reaction of an aldimine bearing an aliphatic substituent on the imino-nitrogen. For example, N-cyclohexyl aldimine 1k could not be converted into the β -amino esters under similar reaction conditions, but 1k remained intact (entry 11 in Table 2).

In all the examples presented here, the reaction path was generally controlled to afford a β -amino ester, whereas the diastereoselectivity of the products is moderate and both diastereomers are inseparable through column chromatography at this stage (Table 1 and 2). Although numerous examples of the Mannich-type reaction for aldimines with enoxysilanes are reported, the general procedure for controlling the diastereochemistry has not been established.³ Therefore, the present three-component coupling retains a sufficient usefulness in synthetic organic chemistry despite this defect. It discloses a

Table 2 Rhodium-catalyzed Mannich-type reaction of aldimine 1 with 2 and 3^a

	1						
Entry		\mathbb{R}^1	R ²	Time/h	Product (%) ^b	syn:anti ^c	
1	1a	Ph	p-Ts	6	6a (96)	32:68	
2	1b	Ph	p-ClC ₆ H ₄	20	6b (87)	51:49	
3	1c	Ph	Ph	27	6c (82)	54:46	
4	1d	Ph	p-MeOC ₆ H ₄	15	6d (71)	51:49	
5	1e	Ph	o-MeOC ₆ H ₄	4	6e (60) ^{de}	42:58	
6	1f	p-ClC ₆ H ₄	p-Ts	5	6f (76)	29:71	
7	1g	p-MeOC ₆ H ₄	p-Ts	30	6g (95) ^e	41:59	
8	1h	o-MeOC ₆ H ₄	p-Ts	4	6h (93)	50:50	
9	1i	o-HOC ₆ H ₄	p-Ts	8	6i (75)	38:62	
10	1j	(E)-PhCH=CH	p-Ts	48	6j (56) ^f	37:63	
11	1k	Ph	Cyclohexyl	24	6k (0)	_	

^a A mixture of **1** (1 mmol), **2** (2 mmol) and **3** (2 mmol) in 2 ml of solvent was added to a 4 ml solution of **4c** (1 mol% for **1**) and the resulting mixture was then refluxed for the period shown above. ^b Isolated yield. ^c The ratio of the two diastereoisomers was determined by ¹H NMR analysis. ^d Another product, *N*-benzyl-*N*-2-methoxyphenylamine (**7e**), was concomitantly obtained in 15% yield with **6e**. ^e **4a** was used for catalyst precursor instead of **4c**. ^f TsNH₂ was recovered in 32% yield.

new route to design certain types of β -amino carbonyl compounds under almost neutral conditions.

In summary, a useful method for the synthesis of β -amino esters has been developed. This methodology provides a convenient route for Mannich-type transformation of the aldimines with an α,β -unsaturated ester and a hydrosilane in the catalysis of a cationic rhodium(1) complex. In this reaction, the rhodium enolate plays an important role in the nucleophilic attack on the sp² carbon of the aldimine. Since only a few examples have been reported for Mannich-type transformation catalyzed by a transition metal complex,9 this article describes good examples for the application of transition metals as catalysts of Mannich-type reactions.

Notes and references

- E. F. Kleinman, in *Comprehensive Organic Synthesis*, eds. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 2, p. 893; M. Arend, B. Westermann and N. Risch, *Angew. Chem., Int. Ed.*, 1998, 37, 1045.
- 2 For example, see: S. Kobayashi, H. Ishitani, Y. Yamashita, M. Ueno and H. Shimizu, Tetrahedron, 2001, 57, 861; H. Ishitani, M. Ueno and S. Kobayashi, J. Am. Chem. Soc., 2000, 122, 8180; D. Ferraris, B. Young, T. Dudding, W. J. Drury III and T. Lectka, Tetrahedron, 1999, 55, 8869; H. Ishitani, T. Kitazawa and S. Kobayashi, Tetrahedron Lett., 1999, 40, 2161; D. Ferraris, B. Young, T. Dudding and T. Lectka, J. Am. Chem. Soc., 1998, 120, 4548; H. Ishitani, M. Ueno and S. Kobayashi, J. Am. Chem. Soc., 1997, 119, 7153; M. Shimizu, K. Kume and T. Fujisawa, Tetrahedron Lett., 1995, 36, 5227; K. Ishihara, M. Miyata, K. Hattori, T. Tada and Y. Yamamaoto, J. Am. Chem. Soc., 1994, 116, 10520; R. A. Pilli and D. Russowsky, J. Chem. Soc., Chem. Commun., 1987, 1053; G. Guanti, E. Narisano and L. Banfi, Tetrahedron Lett., 1987, 28, 4331; J. -E. Dubois and G. Axiotis, Tetrahedron Lett., 1984, 25, 2143; K. Ikeda, K. Achiwa and M. Sekiya, Tetrahedron Lett., 1983, 24, 4707; I. Ojima, S. Inaba and M. Nagai, Synthesis, 1981, 545; I. Ojima, S. Inaba and K. Yoshida, Tetrahedron Lett., 1977, 3643.
- 3 T. Akiyama, J. Takaya and H. Kagoshima, *Tetrahedron Lett.*, 2001, 42, 4025; R. Hayakawa and M. Shimizu, *Chem. Lett.*, 1999, 591; S. Kobayashi, H. Ishitani and M. Ueno, *J. Am. Chem. Soc.*, 1998, 120, 431; M. Shimizu, K. Kume and T. Fujisawa, *Chem. Lett.*, 1996, 545; K. Hattori and H. Yamamoto, *Tetrahedron*, 1994, 50, 2785; S. Shimada, K. Saigo, M. Abe, A. Sudo and M. Hasegawa, *Chem. Lett.*, 1992, 1445.
- 4 K. Miura, K. Tamaki, T. Nakagawa and A. Hosomi, Angew. Chem., Int. Ed. Engl., 2000, 39, 1958; S. Kobayashi and H. Ishitani, J. Chem. Soc., Chem. Commun., 1995, 1379; T. Mukaiyama, K. Kashiwagi and S. Matsui, Chem. Lett., 1989, 1397; N. Yamasaki, M. Murakami and T. Mukaiyama, Chem. Lett., 1986, 1013; See also: B. List, J. Am. Chem. Soc., 2000, 122, 9336.
- 5 I. Fleming, A. Barbero and D. Walter, Chem. Rev., 1997, 97, 2063; P. W. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, Berlin, 1983; E. W. Colvin, Silicon in Organic Synthesis, Butterworth, London, 1981.
- 6 F. J. McQuillin, D. G. Parker and G. R. Stephenson, *Transition Metal Organometallics for Organic Synthesis*, Cambridge University Press, Cambridge, 1991; L. S. Hegedus, (Volume editor) in *Comprehensive Organometallic Chemistry II*, eds. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon Press, Oxford, 1995, vol. 12.
- 7 For recent review see: H.-W. Frühauf, Chem. Rev., 1997, 97, 523; M. Lautens, W. Klute and W. Tam, Chem. Rev., 1996, 96, 49; L. F. Tietze, Chem. Rev., 1996, 96, 115; E. Negishi, C. Copéret, S. Ma, S. Lion and F. Liu, Chem. Rev., 1996, 96, 365; I. Ojima, M. Tzamarioudaki, Z. Li and R. J. Donovan, Chem. Rev., 1996, 96, 635; L. F. Tietze and F. Haunert, in Stimulating Comcepts in Chemistry, eds. M. Shibasaki, J. F. Stoddart, F. Vögtle, Wiley VCH, Weinheim, 2000, p. 39.
- 8 T. Muraoka, I. Matsuda and K. Itoh, Organometallics, 2001, 20, 4676; T. Muraoka, I. Matsuda and K. Itoh, J. Am. Chem. Soc., 2000, 122, 9552; T. Muraoka, H. Asaji, Y. Yamamoto, I. Matsuda and K. Itoh, Chem. Commun., 2000, 199; T. Muraoka, I. Matsuda and K. Itoh, Tetrahedron Lett., 1998, 39, 7325 and references cited therein.
- A. Fujii, E. Hagiwara and M. Sodeoka, J. Am. Chem. Soc., 1999, 121, 5450; E. Hagiwara, A. Fujii and M. Sodeoka, J. Am. Chem. Soc., 1998, 120, 2474; T. Soga, H. Takenoshita, M. Yamada and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1990, 63, 3122.