www.rsc.org/chemcomm

ChemComm

CsPb₃Bi₃Te₈ and CsPb₄Bi₃Te₉: low-dimensional compounds and the homologous series $CsPb_mBi_3Te_{5+m}$

Kuei-Fang Hsu,^a Sangeeta Lal,^b Tim Hogan^b and Mercouri G. Kanatzidis*a

^a Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824, USA. E-mail: kanatzid@cem.msu.edu

^b Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA. E-mail: hogant@egr.msu.edu

Received (in Cambridge, UK) 28th February 2002, Accepted 30th April 2002 First published as an Advance Article on the web 24th May 2002

Two new thermoelectric materials of quaternary bismuth telluride CsPb₃Bi₃Te₈ and CsPb₄Bi₃Te₉ are reported, which are members of a homologous series featuring anionic slabs $[Pb_mBi_3Te_{5+m}]^-$ (m = 1-4) of monotonically increasing thickness.

Research in new thermoelectric materials is focused on heavily doped semiconductors composed of atoms with large mass, complex crystal structures and narrow band-gap.1 These attributes can lead to high power factors and low thermal conductivity both necessary to achieve a high figure of merit.²⁻⁷ Recently, we reported the phase CsBi₄Te₆, which when properly doped can reach a high thermoelectric figure of merit below room temperature.⁸ In an effort to produce new materials that resemble CsBi₄Te₆, we introduced Pb metal into its layered framework and searched for corresponding quaternary phases. This produced CsPbBi₃Te₆ and CsPb₂Bi₃Te₇, which featured lavered structures with infinite anionic 'PbTe'-type slabs of [PbBi₃Te₆]⁻ and [Pb₂Bi₃Te₇]⁻ separated with Cs⁺ cations.⁹ To our surprise we subsequently discovered that reactions of CsBi₄Te₆ with larger amounts of PbTe continued to form more interesting higher order phases (rather than mixtures of CsPb₂Bi₃Te₇ and PbTe) in such a fashion that we can now define a new homologous series of the type $CsPb_mBi_3Te_{5+m}$ with systematically varying structure and composition. The new family defines a new structural motif that can be exploited in designing future thermoelectrically promising materials. The two higher order phases $CsPb_3Bi_3Te_8$ (m = 3) and $CsPb_4Bi_3Te_9$ (m = 4) are characterized by enlarged slab thickness and a robust framework that is based on the NaCl motif.[†]

The structure of CsPb₃Bi₃Te₈ features thick [Pb₃Bi₃Te₈]⁻ slabs separated by layers of Cs^+ cations perpendicular to the b axis. The [Pb₃Bi₃Te₈]- slab consists of three distinct M metal sites occupied by both Bi3+ and Pb2+ ions10 and it can be viewed as a fragment excised from PbTe-type structure with a thickness of eight {PbTe} monolayers, see Fig. 1Ac.

Reacting CsBi₄Te₆ with an extra equivalent of PbTe led to the next member CsPb₄Bi₃Te₉, which also adopts a layered structure made up of even thicker $[Pb_4Bi_3Te_9]^-$ slabs (Fig. 1Ad). As indicated by bond-valence sum calculations, both Bi³ and Pb2+ ions occupy the five distinct M sites in the [Pb₄Bi₃Te₉]⁻ slab.¹⁰ The slab (also a NaCl slice) is expanded by one {MTe} monolayer compared to the [Pb₃Bi₃Te₈]⁻ slab, Fig. 1B. The M metals sites in $[Pb_3Bi_3Te_8]^-$ and $[Pb_4Bi_3Te_9]^-$ are octahedrally coordinated with Te atoms and posses slight local distortions. Interestingly, the MTe₆ octahedra present in the strucrures increase their distortions from the interior to the exterior of the slabs.11 This may result from relaxation effects since the Te atoms are coordinated with 6, 4 and 2 M atoms as one moves from the center of the slab towards the surface.

The two layered compounds reported here along with CsPbBi₃Te₆ and CsPb₂Bi₃Te₇ clearly establish the brand-new homologous series $CsPb_mBi_3Te_{5+m}$ (m = 1, 2, 3, 4). These phases crystallize in the same space group and have systematically varying structures, see Table 1 and Fig. 1.12 The thickness difference between the $[Pb_4Bi_3Te_9]^$ and $[Pb_3Bi_3Te_8]^-$ slabs is 2.252 Å, *i.e.* the thickness of one {MTe} monolayer, which corresponds to half the value of dimensional difference of the b axes between sequential structures, 4.401 Å.13

Occupancy refinements showed that the Cs sites were not fully occupied. The occupancies were 0.93 for CsPb₃Bi₃Te₈ and 0.96 for CsPb₄Bi₃Te₉. The final formulae were thus adjusted to be Bi-rich compositions for electroneutrality, i e

Fig. 1 (A) The structures of (a) CsPbBi₃Te₆, (b) CsPb₂Bi₃Te₇, (c) CsPb₃Bi₃Te₈ and (d) CsPb₄Bi₃Te₉ in projection down the c axis for (a) and (c) and the a axis for (b) and (d). The largest shaded circles are Cs atoms, medium shaded circles are M atoms and open circles are Te atoms. (B) A perspective view of the PbTe structure along the [011] direction and slices thereof. The polyhedra represent PbTe₆ octahedra. The [PbBi₃Te₆]⁻, [Pb₃Bi₃Te₇]⁻, [Pb₃Bi₃Te₈]⁻ and [Pb₄Bi₃Te₉]- slabs are fragments excised from this lattice with (a) 4, (b) 5, (c) 6, and (d) 7 monolayers. Crystals of these phases grow as long thin needles with the needle direction being parallel to the projection view shown here.

ЫÖ

Table 1 Summary of crystallographic data for the layered compounds $\text{CsPb}_m\text{Bi}_3\text{Te}_{5+m}$

m	Space group	a/Å	b/Å	c/Å	Ζ	V/Å ³	Na
1	Cmcm	6.3326(6)	28.667(3)	4.3637(4)	4	792.1(2)	4
2	Cmcm	4.3456(6)	32.476(5)	12.508(2)	8	1765.2(7)	5
3	Cmcm	6.3736(8)	37.731(5)	4.4416(6)	4	1068.1(4)	6
4	Cmcm	4.4524(6)	42.132(6)	12.742(2)	8	2390.3(9)	7
^{<i>a</i>} N is the number of monolayers in each slab.							

 $Cs_{0.93}Pb_{2.93}Bi_{3.07}Te_8$ and $Cs_{0.96}Pb_{3.96}Bi_{3.04}Te_9$. These were confirmed with microprobe energy dispersive analyses. Interestingly, the Cs atom occupation approaches the ideal value of 1 with increasing m value (i.e. slab thickness). The Cs cations are coordinated with nine Te atoms distributed peripherally around the slabs in the four structures. The topography of evenlayered (*i.e.* m = 1, 3) slabs is different from that of odd-layered (*i.e.* m = 2, 4) slabs where the terminal μ_2 -Te atoms are arranged in a staggered fashion in the former, and in an eclipsed fashion in the latter. However, these slabs stack along the b axis by *c*-glide symmetry so that they generate tricapped trigonal pyrismatic sides for the Cs atoms. Because the rows of terminal μ_2 -Te atoms found on the slab surfaces shift from being on m2msites in $[Pb_mBi_3Te_{5+m}]^-$ (m = 1, 3) to being on m sites in $[Pb_mBi_3Te_{5+m}]^-$ with (m = 2, 4), the repeating units along the *c*-axis of $CsPb_mBi_3Te_{5+m}$ with m = 2 and 4 are doubled compared to those with m = 1 and 3.

Charge transport measurements on oriented polycrystalline ingots of CsPb_mBi₃Te_{5+m} (m = 3, 4) parallel to the needle direction show metal-like behavior in the electrical conductivity, which increases as the temperature drops. As shown in Fig. 2, the electrical conductivities decreases from 500 S cm⁻¹ at 80 K to 410 S cm⁻¹ at 350 K for CsPb₃Bi₃Te₈ and from 460 S cm⁻¹ at 80 K to 400 S cm⁻¹ at 350 K for CsPb₄Bi₃Te₉. The thermopower values are between -50 and $-70 \,\mu V K^{-1}$ at 350 K. The moderate thermopower and metallic like temperature dependence of conductivity indicate that CsPb_mBi₃-

Fig. 2 Electrical conductivity and thermopower data for oriented polycrystalline ingot samples of (a) $CsPb_3Bi_3Te_8$ and (b) $CsPb_4Bi_3Te_9$. The crosses are thermopower and circles are electrical conductivity.

Te_{5+m} materials are heavily doped. This is consistent with their Bi-rich non-stoichiometric nature. Remarkably, the thermal conductivity at room temperature is very low at ~1.5 W m⁻¹ K⁻¹ for both CsPb₃Bi₃Te₈ and CsPb₄Bi₃Te₉ and lower than Bi₂Te₃ (~1.8 W m⁻¹ K⁻¹) the premier thermoelectric material. The long lattice period, two-dimensional crystal structures and heavy atoms in the structure play an important role in depressing the thermal conductivities in these materials.

Financial support from the Office of Naval Research and DARPA is gratefully acknowledged.

Notes and references

[†] Crystals of CsPb_mBi₃Te_{5+m} (m = 3, 4) were obtained by reacting CsBi₄Te₆ with PbTe in molar ratios of 1:4 and 1:6, respectively. Single phase of CsPb₃Bi₃Te₈ was also obtained by reacting Cs metal and Pb_{2.85}Bi₃Te₈ with molar ratio 0.85:1. Single phase of CsPb₄Bi₃Te₉ was obtained by reacting Cs metal and Pb_{3.9}Bi₃Te₉ with molar ratio 0.9:1. The two reactions were heated at 700 °C for 2 h followed by cooling to 500 °C in 2 h and finally quenching to room temperature.

Crystal data: $C_{0.93}P_{0.39}B_{1.307}T_{e8}$, orthorhombic, *Cmcm, a* = 6.3736(8), *b* = 37.731(5), *c* = 4.4416(6) Å, *V* = 1068.1(4) Å³, *Z* = 4, *D_c* = 15.765 g cm⁻³, μ = 124.459 mm⁻¹, total reflections 3069, independent reflections 757 (R_{int} = 0.0588), *R*1 = 0.0597, *wR2* = 0.1583. Cs_{0.96}Pb_{3.96}Bi_{3.04}Te₉, orthorhombic, *Cmcm, a* = 4.4524(6), *b* = 42.133(6), *c* = 12.742(2) Å, *V* = 2390.3(6) Å³, *Z* = 8, *D_c* = 15.23 g cm⁻³, μ = 125.92 mm⁻¹, total reflections 7600, independent reflections 1727 (R_{int} = 0.075), *R*1 = 0.049, *wR2* = 0.107. CCDC reference numbers 180732 and 180733. See http://www.rsc.org/suppdata/cc/b2/b202043b/ for crystallographic data in CIF or other electronic format.

- G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling. In *CRC Handbook of Thermoelectrics*, ed. D. M. Rowe, CRC Press, Boca Raton, FL, 1995, pp. 407–440.
- 2 A. Mrotzek, L. Iordanidis and M. G. Kanatzidis, *Chem. Commun.*, 2001, 17, 1648–1649.
- 3 L. Iordanidis, P. W. Brazis, T. Kyratsi, J. Ireland, M. Lane, C. R. Kannewurf, W. Chen, J. S. Dyck, C. Uher, N. A. Ghelani, T. Hogan and M. G. Kanatzidis, *Chem. Mater.*, 2001, **13**, 622–633.
- 4 K. S. Choi, D. Y. Chung, A. Mrotzek, P. Brazis, C. R. Kannewurf, C. Uher, W. Chen, T. Hogan and M. G. Kanatzidis, *Chem. Mater.*, 2001, 13, 756–764.
- 5 A. Mrotzek, D. Y. Chung, N. A. Ghelani, T. Hogan and M. G. Kanatzidis, *Chem. Eur, J.*, 2001, **7**, 1915–1926.
- 6 Y. C. Wang and F. J. DiSalvo, Chem. Mater., 2000, 12, 1011-1017.
- 7 D. Y. Chung, L. Iordanidis, K. K. Rangan, P. W. Brazis, C. R. Kannewurf and M. G. Kanatzidis, *Chem. Mater.*, 1999, **11**, 1352–1362.
- 8 D. Y. Chung, T. Hogan, P. W. Brazis, M. Rocci-Lane, C. R. Kannewurf, M. Bastea, C. Uher and M. G. Kanatzidis, *Science*, 2000, 287, 1024–1027.
- 9 K. F. Hsu, D. Y. Chung, S. Lal, A. Mrotzek, T. Kyratsi, T. Hogan and M. G. Kanatzidis, J. Am. Chem. Soc., 2002, 000asap. article.
- 10 The metal sites are assumed to be Pb atoms and bond valence $s = \exp[(R_o R_i)/B]$ where $R_o = 2.873$, B = 0.37 and R_i is the bond length. The sums of bond valence were 2.85, 2.55, 2.54 for M(1), M(2) and M(3) metal sites in CsPb₃Bi₃Te₈, respectively. The sums of bond valence were 2.83, 2.39, 2.74, 2.52, 2.53 for M(1), M(2), M(3), M(4) and M(5) metal sites in CsPb₄Bi₃Te₉, respectively: I. D. Brown, *J. Appl. Crystallogr.*, 1996, **29**, 479–480.
- 11 Distortions of octahedra 10⁴ are 29.8, 10.0 and 0.3 for M(1)Te₆, M(2)Te₆ and M(3)Te₆ in CsPb₃Bi₃Te₈, respectively. Distortions of octahedra are 30.4, 10.6, 10.0, 2.7 and 0.1 for M(1)Te₆, M(2)Te₆, M(3)Te₆, M(4)Te₆ and M(5)Te₆ in CsPb₄Bi₃Te₉, respectively. M(1), M(2), M(3), M(4) and M(5) are metal sites situated from the inner to the outer sphere of slabs (an octahedral distortion is defined by = $1/6\Sigma[(R_i R_a)/R_a]^2$ where R_i is the bond length and R_a is the average bond length).
- 12 The *b* axis of the CsPb_mBi₃Te_{5+m} (m = 1, 2, 3 and 4) structures evolves linearly with the number of {MTe} monolayers in the slabs N (N = 4, 5, 6 and 7) according to the equation y = 10.144 + 4.565x, $R^2 = 0.997$.
- 13 The thickness difference between the [Pb₃Bi₃Te₈][−] and [Pb₂Bi₃Te₇][−] slabs, 2.574 Å, is half the value of the dimensional difference of *b* axes between sequential structures, 5.255 Å.