www.rsc.org/chemcomm

ChemComm

Reversible covalent chemistry of CO₂

Erin M. Hampe and Dmitry M. Rudkevich*

Department of Chemistry and Biochemistry, University of Texas at Arlington, P. O. Box 19065, Arlington, TX 76019, USA. E-mail: rudkevich@uta.edu

Received (in Columbia, MO, USA) 16th April 2002, Accepted 28th May 2002 First published as an Advance Article on the web 13th June 2002

Reversible reaction of CO_2 with fluorescently active amines in polar aprotic solvent rapidly results in carbamic acids, which significantly enhances the solution fluorescence.

Extensive carbon dioxide (CO₂) circulation in atmosphere, industry, transport, and agriculture requires its systematic monitoring under a variety of climates and conditions, and necessitates the development of improved methods of CO₂ chemical fixation.¹ Fast, quantitative and reliable CO₂ sensors are also needed in anesthesiology and physiology, for measuring cardiovascular system exchange rates, and for gas concentration determination in blood during surgery.^{1,2} Current CO₂ sensors are mostly electrochemical and monitor pH changes in solution upon bicarbonate formation or changes in ionic conduction in the solid state.² Being in general an unreactive molecule, CO₂ combines rapidly with amines, at ordinary temperatures and pressures; the resulting carbamate salts are thermally unstable and release CO₂ upon heating.³ These processes are of practical importance: polymer-supported amines are used to remove CO₂ from gas streams⁴ and can be used for CO₂ sensing.⁵ We apply dynamic covalent interactions between primary amines and CO₂ for reversible assembly of novel light-emitting molecular devices and describe here our surprising findings in the chemistry of these processes. These may open new opportunities for the construction of novel nanostructures and materials upon reversible CO₂ fixation.

The sequence of binding events involving CO_2 and amines was studied by UV–vis, fluorescence and ¹H and ¹³C NMR spectroscopy and depicted on Fig. 1. Bubbling CO₂ through solutions of 1-aminomethylnaphthalene **1** or 1-aminomethylpyrene **2** in polar aprotic solvent such as DMSO or DMF did not change their UV–vis spectra but resulted in strong fluorescence enhancement, thus directly reporting on the CO₂ entrapment (Fig. 2).

Upon excitation with $\lambda_{ex} = 282$ and 341 nm for 1 and 2 respectively, CO₂ yielded intense, broad emission at $\lambda_{em} \sim 336$ and 380 nm, respectively. At the same time, free amines 1 and 2 only weakly emit fluorescence under these conditions.

Photoinduced electron transfer (PET) quenching of excited aromatic fluorophores by intramolecular amino groups has been

When performed in the NMR tube in DMSO- d_6 , the above experiments resulted in quite significant transformation of the spectra (Fig. 3). In particular, prior to the CO_2 exposure, benzylic CH_2 protons of **1** and **2** were seen as singlets at 4.19 and 5.09 ppm, respectively. After the CO₂ bubbling, these were transformed into doublets (J = 6.0 Hz) at 4.63 and 4.91 ppm, respectively. In both cases, a very broad signal appeared at ~ 10.7 ppm, which was assigned to the C(O)OH. The carbamate NH signals also emerged as triplets (J = 6.0 Hz) at 7.37 and 7.54 ppm, respectively. Integration of the high resolution ¹H NMR spectra clearly indicated the formation of the 1:1 amine-CO₂ adducts, carbamic acids 3 and 4 (Fig. 1, and 3). Carbamic acids are usually considered highly unstable.^{3,4} Upon formation, they typically release CO₂ to yield the corresponding free amines. In addition, the acidic OH proton may further be transferred to the second amine molecule with the formation of the corresponding alkylammonium carbamic salts. According to the ¹H NMR spectra, neither process was observed in our experiments, and carbamic acids $\mathbf{3}$ and $\mathbf{4}$ existed in DMSO and DMF solutions for hours. The corresponding ¹³C NMR C=O signals were found at 158 ppm (DMSO- d_6).

Bubbling N₂ through the above DMSO solutions of **3** and **4** resulted in loss of CO₂, even at room temperature. The fluorescence emission decreased as well. Initially, free amines **1** and **2** were formed (¹H NMR), which rapidly abstracted the acidic OH protons from the remaining carbamic acids **3** and **4**, respectively, and partially precipitated as carbamate salts **5** and **6**.

In separate experiments, carbamate salts **5** and **6** were quantitatively prepared upon bubbling CO₂ through solutions of **1** and **2** in less polar CHCl₃, MeCN or THF. Their structure was confirmed by high resolution ¹H NMR, ¹³C NMR and elemental analysis.[‡] In particular, benzylic CH₂ protons were seen in DMSO- d_6 as two separate signals: a singlet at 4.22 and a doublet at 4.62 ppm (J = 5.5 Hz) for **5**, and a singlet at 4.48 and a doublet at 4.90 ppm (J = 5.5 Hz) for **6** (Fig. 3). The carbamate

Fig. 2 Fluorescence measurements with 1 and 2 ($\lambda_{ex} = 282$ and 341 nm, respectively) in DMF before and after saturation with CO₂. All solutions were deoxygenated with N₂ prior measurements; [1] = [2] = 10⁻⁶ M.

Fig. 3 CO₂ induced spectral changes of 1-aminomethylnaphthalene **1**. A and B: ¹H NMR spectra (500 MHz, DMSO- d_6 , 295 K) of **1** before and after saturation with CO₂, respectively. C: ¹H NMR spectrum of carbamate salt **5**. The NH and benzylic CH₂ signals are assigned. The impurity signal is marked '•'. The initial solutions were deoxygenated with N₂ prior to measurements.

NH signals were seen as triplets (J = 5.5 Hz) at 7.32 and 7.53 ppm, respectively.

Analogous results were obtained when CO_2 was used as dry ice. Fine suspensions of both precipitates **5** and **6** appeared to be strongly fluorescent upon exposure to UV light of the appropriate excitation wave length.

When solutions of 1 and 2 were exposed to the laboratory air, carbamates 5 and 6 precipitated within minutes (in $CHCl_3$, MeCN or THF).

At the same time, carbamates **5** and **6** are stable compounds and cannot be transformed to amines **1** and **2** by simply bubbling N_2 through their solutions. On the other hand, loss of CO₂ from **5** and **6** was readily achieved within several minutes upon heating. Thus, **5** and **6** were transformed (>90%) back to amines **1** and **2** upon refluxing in toluene (80 °C, 1–2 h).

In summary, information about reversible covalent binding of CO_2 can be conveniently transmitted *via* light signals (Fig. 1). Besides this sensory role and due to the reversibility, such behavior have a potential for information processing since the emission can be switched between two distinguishable, amine/ carbamic acid states. These findings also open wider possibilities towards more complex light-emitting devices and functional nanostructures and materials, including crown ethers, hemicarcerands, capsules,⁸ and gels,⁹ which involve CO_2 chemical fixation and based on its reversible¹⁰ covalent bonding to amines. We are currently preparing these structures and will report on due to the course.

We are grateful to The University of Texas at Arlington for financial support. Prof. M. Pomerantz is acknowledged for helpful discussions.

Notes and references

 \dagger In our hands, fluorescence intensity of **1** and **2** significantly (~10 times) increased upon addition of TFA (5% v/v) to their MeCN solutions.

‡ NMR spectra were obtained on a JEOL Eclipse (500 MHz) and Bruker 300 MHz NMR spectrometers; fluorescence was measured on Jobin YvonFluoroMax 3 and SpexFluorimeter-1404 0.85m spectrometers. Selected spectra for **3**: ¹H NMR (DMSO-*d*₆): δ 8.13 (d, *J* 9.0 Hz, 1 H), 7.94 (d, *J* 9.0 Hz, 1 H), 7.83 (d, *J* 9.0 Hz, 1 H), 7.6–7.4 (m, 4 H), 7.37 (t, *J* 6.0 Hz, 1 H), 4.62 (d, *J* 6.0 Hz, 2 H). ¹³C NMR (DMSO-*d*₆): δ 158.1 (C=O). Selected ¹H NMR (DMSO-*d*₆) data for **4**: δ 8.5–8.0 (m, 9 H), 7.54 (t, *J* 6.0 Hz, 1 H), 4.91 (d, *J* 6.0 Hz, 2 H). Selected data for **5**: mp 105 °C (decomp.); ¹H NMR (DMSO-*d*₆): δ 8.12 (2 × d, *J* 8.0 Hz, 2 H), 7.93 (d, *J* 8.0 Hz, 2 H), 7.6–7.4 (m, 8 H), 7.32 (t, *J* 5.5 Hz, 1 H), 4.62 (d, *J* 5.5 Hz, 2 H), 4.22 (s, 2 H). ¹³C NMR (DMSO-*d*₆): δ 158.5 (C=O). Anal. Calc. for C₂₃H₂₂N₂O₂·0.2H₂O₁: ¹³C NMR (DMSO-*d*₆): δ 158.5 (C=O). Anal. Calc. for C₂₃H₂₂N₂O₂·0.2H₂O₁: ¹³C NMR (DMSO-*d*₆): δ 158.5 (C=O). Anal. Calc. for C₂₃H₂₂N₂O₂·0.2H₂O₁: ¹³C NMR (DMSO-*d*₆): δ 158.5 (C=O). Anal. Calc. for C₂₃H₂₂N₂O₂·0.2H₂O₁: ¹³C NMR (DMSO-*d*₆): δ 158.5 (C=O). Anal. Calc. for C₂₃H₂₂N₂O₂·0.2H₂O₁: ¹³C NMR (DMSO-*d*₆): δ 158.5 (C=O). Anal. Calc. for C₂₃H₂₂N₂O₂·0.2H₂O₁: ¹³C NMR (DMSO-*d*₆): δ 158.5 (C=O). Anal. Calc. for C₂₃H₂₂N₂O₂·0.2H₂·0.2H₂·0

- X. Xiaoding and J. A. Moulijn, *Energy Fuels*, 1996, **10**, 305; N. H. Batjes, *Biol. Fertil. Soils*, 1998, **27**, 230; *Chem. Eng. News*, 2001, Nov. 19, 56.
- 2 H. Suzuki, H. Arakawa, S. Sasaki and I. Karube, Anal. Chem., 1999, 71, 1737; M. B. Tabacco, M. Uttamlal, M. McAllister and D. R. Walt, Anal. Chem., 1999, 71, 154; M. D. DeGrandpre, M. M. Baehr and T. R. Hammar, Anal. Chem., 1999, 71, 1152; S. Hanstein, D. de Beer and H. H. Felle, Sens. Actuators B, 2001, 81, 107; R. K. Meruva and M. E. Meyerhoff, Biosens. Biolelectron., 1998, 13, 201; review: O. S. Wolfbeis, Anal. Chem., 2000, 72, 81R.
- 3 D. E. Penny and T. J. Ritter, J. Chem. Soc., Faraday Trans. 1, 1983, 79, 2103; W. McGhee, D. Riley, K. Christ, Y. Pan and B. Parnas, J. Org. Chem., 1995, 60, 2820; M. Aresta and E. Quaranta, Tetrahedron, 1992, 48, 1515.
- 4 E. Sada, H. Kumazawa and Z. Han, *Q. Chem. Eng. J.*, 1985, **31**, 109; E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, *J. Am. Chem. Soc.*, 2002, **124**, 926; carbamic acid: R. K. Khanna and M. H. Moore, *Spectrochim. Acta, Part A*, 1999, **55**, 961.
- 5 L. C. Brousseau III, D. J. Aurentz, A. J. Benesi and T. E. Mallouk, *Anal. Chem.*, 1997, **69**, 688 (polymeric films); R. Zhou, S. Vaihinger, K. E. Geckeler and W. Göepel, *Sens. Actuators B*, 1994, **19**, 415 (quartz crystal microbalance).
- 6 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, *Chem. Rev.*, 1997, 97, 1515.
- 7 P. Herman, Z. Murtaza and J. R. Lakowicz, Anal. Biochem., 1999, 272, 87.
- 8 D. M. Rudkevich, Bull. Chem. Soc. Jpn., 2002, 75, 393.
- 9 M. George and R. G. Weiss, J. Am. Chem. Soc., 2001, 123, 10393.
- 10 Compare: J.-M. Lehn, *Chem. Eur. J.*, 1999, **5**, 2455; S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and J. F. Stoddart, *Angew. Chem., Int. Ed.*, 2002, **41**, 898.