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Syntheses of CJ-15,161 (1) involving intermolecular N-
arylation of an appropriately functionalized diamine, ob-
tained from the precursor a-amino acids or, more conven-
iently, from the corresponding 1,2-amino alcohols via
1,2,3-oxathiazolidine-2,2-dioxide 22, are reported.

During the past few years, significant progress has been made in
the development of Pd-catalyzed cross-coupling of amines and
aryl halides.1 The ability to utilize relatively inexpensive aryl
chlorides2 has further enhanced the scope of the process,
particularly in an industrial sense. We became interested in this
area in the course of developing a fundamentally different
synthetic strategy to a potential kappa receptor agonist, CJ-
15,161 (1), that would be convergent as well as amenable to
scale-up. The major limitations to the original synthetic route
(Scheme 1)3 involving chiral oxirane 2, besides low overall
yield and the noncrystalline nature of the intermediates,
included poor regioselectivity during epoxide ring opening
resulting in an inseparable mixture of regioisomers 3a,b. We
envisioned that a straightforward approach to these systems
would involve a transition metal-mediated amination as the key
step in the synthetic sequence using derivatives of phenyl-
glycine 4 as the chiral amine source. We report here a facile
synthesis of 1, which explores an alternative disconnection
relying on formation of the aniline residue by a palladium-
mediated C–N bond forming step.

Model studies with N-methyl benzyl amine and 4-fluor-
obenzamide showed an extremely sluggish SNAr even at
elevated temperature, while the corresponding aryl bromides
showed promising results when palladium-mediated coupling
conditions were used. Encouraged by these results, efforts were
then directed to apply the sequence on our substrate. The desired
secondary amide 7 was prepared from 3-pyrrolidinol benzoate
(6) and Boc-phenylglycine following standard peptide coupling
conditions in high yield with no detectable epimerization.
Simultaneous reduction of the amide carbonyl, reductive
removal of the benzoate, and reduction of the N-Boc of 7 to the
N–Me derivative 8 was efficiently done in one pot in the
presence of excess LiAlH4 at 80 °C. A controlled reduction

(Scheme 2) followed by quench at 0 °C was conveniently used
to isolate Boc protected amine 9, cleanly.

Alternatively, to avoid scale-up-related issues including
epimerization of amide 7, we decided to use Boc-protected
mesylate 12 or tosylate 134 derived from 1,2-aminol 10 as the
chiral source (Scheme 3). However, attempts to displace either
12 or 13 with pyrrolidinols 14 or 6 produced oxazolidinone 16
as a major byproduct, presumably by intramolecular displace-
ment of the intermediate sulfonate with the carbamate carbonyl
(Scheme 4).5

In order to minimize byproduct formation, and to provide an
effective leaving group with simultaneous protection of the
amine, an alternative strategy was followed. Treatment of Boc
or Cbz protected phenyl glycinols (11 or 19) with SOCl2/Et3N
provided 1,2,3-oxathiazolidine-2-dioxide 20a,b in good yield
(ca. 80%). Interestingly, during a scale-up run the ox-
azolidinone 16 was generated once again, as well as the dimer
21 in considerable amounts.6 However, with appropriate choice

Scheme 1

Scheme 2 Reagents and conditions: (i) BocPhGly, DCC, HOBt, CH2Cl2,
90%; (ii) LAH (5 equiv.), toluene, 0 to 80 °C, 18 h, 70%; (iii) LAH (2.5
equiv.), toluene, 0 °C, 1 h, 80%.

Scheme 3 Reagents and conditions: (i) Boc2O, THF, 91%; (ii) MsCl, Et3N,
CH2Cl2, 84%; (iii) TsCl, Et3N, CH2Cl2, 90%; (iv) 12 or 13, 14, THF/DMF,
45–55 °C, trace; (v) 12, 6, THF/DMF, 40–5 °C, 21%.

Scheme 4
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of the base and reaction conditions these impurities were nearly
eliminated. Thus, substituting pyridine for triethylamine and
with reverse addition of the amine to SOCl2, the isolated yield
of 20 increased significantly ( ~ 98%). A variety of oxidation
conditions were screened for the oxidation of 20 to 22 to avoid
decomposition due to over oxidation, partial deprotection (e.g.,
Boc), or hydrolytic cleavage (Scheme 5). Among them, NaIO4/
RuCl3 conditions proved superior, and the desired dioxides
22a,b were isolated in excellent yield ( > 94%) as off-white
solids.

Nucleophilic displacement of the cyclic sulfamidates 22a,b
with the benzoate protected pyrrolidinol 67 and removal of
protecting groups were straightforward and efficient. Both
protected substrates 22a,b coupled easily at room temperature
with the aminobenzoate 6. The sulfamic acids 23a,b could be
isolated in 60–70% recrystallized yield as the stable zwitterions;
hydrolysis8 with acid then gave the desired amines 24a,b
quantitatively.9 The Boc protecting group was also removed
under these conditions and provided the primary amine 24b
directly. Removal of the Cbz group of 24a also produced 24b
cleanly under transfer hydrogenation conditions.

A variety of palladium/ligand combinations under a wide
range of conditions were explored for the key amination
sequence. The palladium-mediated coupling of the benzylamine
24b with the aryl bromide 25 using a Pd(OAc)2/BINAP catalyst
system provided 27 in a modest yield ( ~ 39%).10 Interestingly,
the Pd2(dba)3/(o-biphen)P(t-Bu)2 combination proved to be
effective only when the corresponding aryl chloride 26 was
used (ca. 42%).1,2 Reductive alkylation in the presence of
paraformaldehyde, using NaBH4/Lewis acids or aqueous for-

maldehyde/sodium triacetoxyborohydride or NaH2PO3 combi-
nations showed some product but the alkylations were not
complete even after prolonged reaction time with excess
reagent. However, the combination of paraformaldehyde,
NaCNBH3, TMSCl and MgSO4 was effective in producing the
desired N-methylated product 28 (55%). Since hydrolysis and
salt formation of 28 to 1 in one pot has been demonstrated,11 the
present efforts concluded a synthesis of 1.

In summary, we have developed an efficient synthesis of CJ-
15,161 involving Pd-catalyzed aryl amination as the key-step.
The described approach is amenable for multigram-scale
preparation of 1. The direct amination of 4-halobenzamide12 as
the halide counterpart, and efficient preparation of the substrate
amine by dual protection/activation involving oxathiazolidine
formation are two noteworthy transformations of the synthetic
scheme and may find broader application for the preparation of
other N-aryl 1,2-diamines.

We sincerely thank Professors Steven Ley (Cambridge) and
David Collum (Cornell) for helpful discussions.
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Scheme 5 Reagents and conditions: (i) CbzCl, CH2Cl2, 89%; (ii) SOCl2,
Et3N, CH2Cl2, ~ 80%; (iii) SOCl2, py, CH2Cl2, ~ 90%; (iv) RuCl3, NaIO4,
CH3CN, H2O, 0 °C to RT, 1 h, > 90%; (v) 6, Et3N, EtOAc, 60–70%; (vi)
2 M HCl, MTBE; (vii) HCO2NH4, Pd/C, THF, quant.; (viii) Pd(OAc)2,
BINAP, Cs2CO3, toluene, 100 °C, 39%; (ix) Pd2(dba)3, (o-biphen)P(t-Bu)2,
Cs2CO3, toluene, 100 °C, 42%; (x) (CHO)n, NaCNBH3, TMSCl, MgSO4,
55%; (xi) aq. NaOH, IPA, then benzoic acid, 81%.
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