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In plane parallel arrangement and enhancement of NLO-
activity are observed upon coordination of heteroditopic
dipoles containing a phosphole ring on square-planar d8-
palladium centre.

A recent strategy in nonlinear optics (NLO) involves gathering
together identical one dimensional (1D) donor(D)–acceptor(A)
substituted chromophores leading to molecular multi(dipolar)
systems.1 This approach however dictates that noncentrosym-
metric organisation of dipolar NLO-phores is achieved at the
molecular level. For bis(dipolar) derivatives, which are the
simplest multi(chromophoric) systems, noncentrosymmetric
structures have been obtained by coordination of 1D-chromo-
phores to tetrahedral metal ions1e or by connection of two
substituted b-naphthols1f–i (V-shaped molecules A, Scheme 1).
We propose herein a new strategy based on the trans-effect, a
long-standing concept in coordination chemistry.2 The most
useful application of this principle is for the preparation of
specific isomers of d8-square planar complexes.3a–e In ac-
cordance with Pearson’s antisymbiotic effect,2b heteroditopic
P,N-donors can control the orientation of a second chelating

ligand in the coordination sphere of a Pd(II)-complex.3c–g

Anticipating that this trans-effect could overcome the natural
anti-parallel alignment tendency of 1D-dipolar chromophores at
a molecular level, we envisaged the synthesis of in-plane
bis(dipolar) assemblies B (Scheme 1) by stereoselective
coordination of P,N-chromophores on a d8-square-planar Pd-
centre.

2-(2-Pyridyl)phospholes act as tightly bonded 1,4-chelates
toward Pd(II) centres and, owing to the different electronic
nature of the donor sites, they undergo stereoselective coor-
dination.3f–h We have shown that phospholes possess a highly
polarisable dienic p-system4 and theoretical studies5 have
suggested that this weakly aromatic P-heterocycle is a poten-
tially interesting p-bridge for the engineering of NLO-phores.
The metal-coordinated pyridyl group will act as an electron-
withdrawing substituent,6 thus, in order to obtain the classical
dipolar D–p–A NLO-phore structure,5,6c–e electron-donating
substituents (dibutylaminophenyl, methoxythienyl) were in-
troduced at the C5-carbon atom of the P-ring. The target
2-(2-pyridyl)phospholes 2a,b were prepared via a ‘zircono-
cene’-promoted intramolecular coupling of diynes 1a,b and
subsequent addition of PhPBr2 (Scheme 1).4,7 These com-
pounds were isolated in fairly good yields as air stable solids
after purification by flash column chromatography on basic
alumina (2a, 73% yield; 2b, 55% yield). They exhibit classical
NMR spectroscopic data4,7 (Table 1) and have been charac-
terised by high resolution mass spectrometry and elemental
analyses. The UV/visible spectra of phospholes 2a,b in CH2Cl2
solution show a broad absorption in the visible region attributed
to the p–p* transition of the extended conjugated system (Table
1). The absorption maxima are comparable for both derivatives
and, as expected, are shifted to longer wavelengths (Dlmax:
20–35 nm) than those recorded for the corresponding deriva-
tives featuring no methoxy3h or dibutylamino electron-donor
end groups. The NLO properties of the donor–acceptor
substituted phospholes 2a,b were determined by the electric-
field-induced second harmonic generation (EFISH, 1.91 mm)
and the nonresonant hyperpolarisabilities were estimated using
the two-level model.8 The EFISH measurements revealed that
phospholes 2a,b exhibit moderate NLO-activities (Table 1),
which are consistent with the weak acceptor character of the
non-coordinated pyridine group.5a,6b Note that the NLO
response of phosphole 2a is slightly superior to that of 2b.

2-(2-Pyridyl)phospholes 2a,b reacted in CH2Cl2 solution
with (CH3CN)4Pd2+, 2 BF4

2 giving rise, almost quantitatively,
to complexes 3a,b isolated as air stable solids (Scheme 1).

Scheme 1 (i) Cp2ZrCl2, 2 BuLi, THF, 278 to 25 °C; (ii) PhPBr2, THF, 278
to 25 °C.

Table 1 31P{1H} NMR, linear and nonlinear optical data for compounds 2a,b and 3a,b

Compound d 31P{1H}a (ppm) lmax
a (nm) e (L mol21 cm21) mbb; mb(0) (10248 e.s.u) bc (10230 e.s.u)

2a +11.5 415 18000 170; 130
2b +10.2 417 17800 120; 90 31d

3a +70.2 420 (550) 11900 (3200) 170
3b +68.9 452 (640) 14400 (3100) 180

a Measured in CH2Cl2. b EFISH measurements in CH2Cl2 (1022 mol L21) at 1.91 mm. c HLS measurements in CH2Cl2 at 1.91 mm. d Calculated from the
experimental HLS value recorded at 1340 nm: b1.91 = b1.34 (R1.34/R1.91); Rw = wo

2/(wo
2 2 w2) (wo

2 2 4w2).
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Complexes 3a,b were characterised by high-resolution mass
spectrometry and gave satisfactory elemental analyses. The
31P{1H} NMR spectra of the crude reaction mixtures contained
only one sharp resonance, indicating the formation of only one
geometric isomer. The large 31P NMR coordination downfield
chemical shifts ( > 50 ppm, Table 1) are consistent with the
formation of five-membered P,N-palladacycles.3f,g Only one set
of 1H and 13C{1H} NMR signals are recorded for the
2-pyridylphosphole ligands indicating that complexes 3a,b
possess a highly symmetric structure. The NMR data of the
2-pyridylphosphole moieties of 3a and 3b are comparable9 and
very similar to those of a related cis-(2-pyridyl-5-thienylphos-
phole)2Pd2+ complex, recently characterised by an X-ray
diffraction study.3g

The ionic nature of complexes 3a,b precludes EFISH
experiments and hence their first molecular hyperpolarisibilities
were measured by means of harmonic light scattering (HLS)
experiments. A fundamental wavelength of 1.91 mm was used in
order to circumvent problems associated with enhancement of b
by two-photon absorption fluorescence since 3a,b exhibit low-
energy UV-vis absorptions (Fig. 1). Complexes 3a,b exhibit
fairly high nonlinear optical activities with b values reaching
170–180 3 10230 e.s.u. These large values clearly indicate that
the trans-effect has imposed a parallel organisation of P,N-
dipoles 2a,b in the Pd-coordination sphere. As expected, the
square-planar metal centre acts as a template imposing a
noncentrosymmetric assembly of identical 1D-chromophores
2a,b. Furthermore, the metal plays a puzzling role since a
considerable enhancement of the NLO-activities is observed
upon complexation (Table 1). The b value of derivative 2b at
1.91 mm (313 10230 e.s.u) was deduced from the experimental
HLS at 1.34 µm (35 3 10230 e.s.u.) using the two-level
dispersion approximation.10 The molecular hyperpolarisibility
of complex 3b (180 3 10230 e.s.u.) is much higher than the sum
over the contribution of two sub-chromophores 2b. In a first
approach, this effect could be related to an increase of the
acceptor character of the pyridine groups and/or to a modifica-
tion of the phosphole dienic p-system polarisability4 upon
coordination. However, it is very likely that the origin of this
large b enhancement is due to the appearance of new
contributions to the second-order molecular hyperpolarisability.
This assumption is supported by the UV-vis spectra of
complexes 3a,b that show two maxima (Fig. 1). Phospholes can
be regarded as classical phosphines7b,c acting predominantly as
s-donors whereas the p-acceptor ability of pyridine is well-
kwown.6 It is thus very probable that the low energy UV-vis
absorptions are due to charge transfers from the metal or the
phosphorus-metal fragments to the pyridine ligands.11 A simple
vector model shows that these metal-to-ligand (MLCT) or
ligand-to-metal-to-ligand charge transfers (LMLCT) will co-
herently contribute to the second harmonic generation (mole-
cule B, Scheme 1).

In conclusion, we have described the first NLO-phores based
on phosphole rings and we have shown that coordination
chemistry offers a simple synthetic methodology for controlling
the in-plane parallel arrangement of 1D-P,N-dipoles in a

molecular assembly. The elucidation of the origin of the
dramatic increase of the NLO-activity observed upon coordina-
tion and the non-centrosymmetric macroscopic organisation of
these new NLO-phores are under active investigation.
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