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A total synthesis of phomactin A (1) based on a Cr(II)/Ni(II)
macrocyclisation from the aldehyde vinyl iodide 11, leading
to 12, followed by elaboration of the epoxyketone 16, which
then undergoes spontaneous pyran-hemiacetal formation on
deprotection, is described.

Phomactin A (1) and its congeners comprise a novel class of
platelet activating factor (PAF) antagonists isolated from the
marine fungus Phoma sp.1 With its unusual reduced fur-
anochroman ring system embedded in a macrocyclic bicyclo-
[9.3.1]pentadecane core, phomactin A is easily the most
structurally complex and synthetically demanding of the
phomactins. In previous studies, we and others, have described
synthetic routes to both the tricyclic reduced furanochroman
22,3 and the bicyclo[9.3.1]pentadecane unit 34,5 in phomactin A
but, hitherto, a total synthesis of this intriguing secondary
metabolite has not been forthcoming.6 We now describe the
development of our synthetic investigations, which have
culminated in the first total synthesis of phomactin A (1).

In an earlier publication4 we described a strategy to the
macrocyclic core in structure 3 based on an intramolecular
Cr(II)/Ni(II) mediated coupling reaction7,8 from an aldehyde
vinyl iodide intermediate, viz. 7?8. The appropriately oxy-
genated precursor to 7 was smoothly obtained from the dioxin
4 via an alkylation sequence (to 5), followed by introduction of
the PMB hydroxymethyl unit, producing 6, and manipulation of
the functionality in 6, as summarised in Scheme 1.

To develop this strategy towards an appropriate precursor to
phomactin A, we first needed to invert the secondary alcohol
centre in 7 prior to the macrocyclisation step. Thus, protection
of the free alcohol in 6, as its p-nitrobenzoyl (PNB) ester,
followed by reduction of the carbonyl group functionality,
under Luche conditions, first led to the b-orientated secondary
alcohol 9 exclusively (Scheme 2).9 Treatment of 9 with thionyl
chloride in ether at 0 °C, followed by reaction of the resulting
allylic chloride with p-methoxybenzyl (PMB) alcohol and t-
BuOK in the presence of 18-crown-6 (THF, 0 °C), resulted in
clean inversion of the secondary alcohol centre in 9 and
formation of the corresponding allylic PMB ether 10, with the
required a-stereochemistry, in 56% overall yield.10,11 Oxida-
tion of 10, using Dess-Martin periodinane, produced the key
aldehyde vinyl iodide intermediate 11 which underwent

macrocyclisation in the presence of CrCl2/NiCl2 leading to the
doubly allylic alcohol 12, in an unoptimised 36% yield.12

Our strategy for completing the synthesis of phomactin A (1)
from the secondary alcohol 12 required a stereoselective
epoxidation of the adjacent trisubstituted double bond followed
by oxidation to the corresponding epoxyketone 16, deprotection
and pyran-hemiacetal ring formation. However, molecular
mechanics calculations and NOE experiments suggested that
epoxidation of 12 would most probably lead to an epoxide with
the incorrect stereochemistry for subsequent conversion into
phomactin A.13 Correspondingly, molecular mechanics calcula-
tions on the epimeric alcohol 14 suggested that this compound
was conformationally predisposed to formation of the epoxide
with the necessary stereochemistry to complete our synthesis of
the natural product. Accordingly, we inverted the secondary
alcohol centre in 12, using an oxidation–reduction sequence via
13, leading to 14. Treatment of 14 with VO(acac)2 and t-
BuOOH next led to the b-epoxide 15 accompanied by the
corresponding bis-epoxide 17 which were easily separated by
chromatography.11,14 Oxidation of 15 using Dess-Martin peri-

† Electronic supplementary information (ESI) available: X-ray crystal
structure data for the bis-epoxide 17. See http://www.rsc.org/suppdata/cc/
b2/b206041h/

Scheme 1 Reagents and conditions: i, LDA, THF, 278 °C; then MeI, 96%;
ii, LDA, DMPU, THF, 278 °C; then (E,E)-ICH2CH2(CH3)CNCH–
CH2CH2(CH3)CNCHI, 76%; iii, PMBOCH2SnBu3, n-BuLi, Et2O, toluene,
278 °C to 225 °C; then 2N HCl, THF, rt, 66%; iv, p-NO2-C6H4COCl,
Et3N, DMAP, CH2Cl2, 225 °C to 0 °C; v, CeCl3·7H2O, NaBH4, MeOH,
CH2Cl2, 278 °C to 240 °C, 75% (2 steps); vi, MOM-Cl, i-Pr2EtN, Bu4NI,
CH2Cl2; vii, KOH, MeOH, 87% (2 steps); viii, Dess-Martin periodinane,
C5H5N, CH2Cl2, 0 °C, 98%; ix, CrCl2 (6 eq.), NiCl2 (0.25 eq.), DMSO,
52%.
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odinane then produced the epoxyketone 16, which on treatment
with DDQ in CH2Cl2 underwent deprotection and spontaneous
pyran-hemiacetal ring formation leading to phomactin A (1).
The synthetic (±)-phomactin A showed NMR spectroscopic
data which were superimposable on those of natural phomactin
A isolated from Phoma sp.15,16
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Scheme 2 Reagents and conditions: i, p-NO2-C6H4COCl, Et3N, DMAP,
CH2Cl2, 225 °C to 0 °C; ii, CeCl3·7H2O, NaBH4, MeOH, CH2Cl2, 278 °C
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