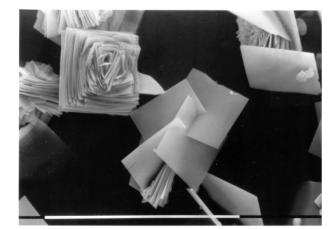
A rapid method of synthesizing the layered titanosilicate JDF-L1

Stanislav Ferdov,^a Vladislav Kostov-Kytin^{*b} and Ognyan Petrov^b

^a Marie Curie Fellowship of the European Community, Institute of Mineralogy and Crystallography, University of Vienna, Vienna, Austria


^b Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Science, bl.107, Academic G. Bonchev Str., No 2, 1113 Sofia, Bulgaria. E-mail: vkytin@mail.bg; Fax: (+359 2) 979 70 56

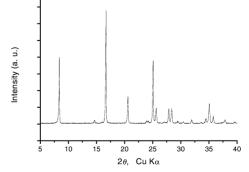
Received (in Cambridge, UK) 29th May 2002, Accepted 5th July 2002 First published as an Advance Article on the web 16th July 2002

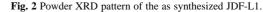
A rapid procedure for synthesis of highly crystalline and pure samples of JDF-L1 without using organics as reactants or templates is described and indexation of the powder X-ray diffraction pattern of this phase is presented.

The novel layered titanosilicate AM-1 was firstly reported in 1995.1 The later synthesis and structural determination of a phase named JDF-L1 showed that it is a structural counterpart of AM-1 with the same chemical composition-Na₄Ti₂-Si₈O₂₂·4H₂O.²⁻⁶ This is an unusual non-centrosymmetric, tetragonal layered solid. Its structure contains titanosilicate layers built of small cage-type units, each one containing eight tetrahedral SiO₄ units and one square-pyramidal TiO₅ polyhedron. Two of these layers are separated by a layer of water molecules sandwiched between two layers of Na⁺ ions.⁵ The JDF-L1 layered structure allows pillaring as demonstrated by the successful intercalation of nonylamine.⁴ Intercalation with bigger molecules could provide specialized use for this material as catalyst, catalyst support, ion exchanger, etc. Furthermore, the five-coordinated titanium(IV) is of less ligand saturation in comparison with the octahedrally-coordinated one known in the structures of other microporous and layered titanosilicates.⁶ This makes JDF-L1 a promising material for oxidation catalysis. JDF-L1 was synthesized by Roberts et al.⁴ using organic reactants as template and source of titanium. In the synthesis of AM-1, Anderson and co-workers^{1,2} used TiCl₃ as the source of Ti. All the above workers have reported that 4 to 10 days are necessary for the crystallization of the phase. We now report the synthesis of JDF-L1 over a very short reaction time (<16 h) using TiCl₄ and in the absence of organic reactants or templates.

The hydrothermal syntheses of JDF-L1 were carried out from gels of the following molar composition: 5-6 Na₂O:1-1.3 TiO₂:10 SiO₂:675 H₂O. The preparation of pure JDF-L1 appeared to be quite sensitive toward the grade of the reactants used and the ratio Na₂O/TiO₂ in the initial batches. Increased values of the latter bring to the formation of crystalline aggregates of ETS-4, which is a microporous titanosilicate phase.⁶ Lowering of these values leads to the appearance of

DOI: 10.1039/b205220m


1786


Fig. 1 SEM micrograph of JDF-L1 aggregates. Bar = $100 \ \mu m$.

quartz in the run product. In a typical synthesis, 1.48 g SiO₂ (Merck) of 200 μ m particle size was added to a solution of 1.1

Table 1 Powder X-ray diffraction data for the as synthesized JDF-L1

$2\theta_{\rm obs}$	$I_{\rm h}$	$d_{(\mathrm{obs})}$	hkl	$d_{(calc)}$	$\delta 2\theta$
9.662	100	10.6733	001	10.6983	-0.023
16.958	5	6.0711	101	6.0703	0.002
19.264	100	5.3498	002	5.3491	0.002
21.999	1	4.6916	111	4.6860	0.207
23.881	35	4.3265	102	4.3295	-0.016
27.746	2	3.7334	112	3.7332	0.001
28.130	8	3.6834	200	3.6859	-0.020
29.073	38	3.5663	003	3.5661	0.002
29.782	21	3.4833	201	3.4849	-0.014
31.534	1	3.2943	210	3.2968	-0.025
32.392	16	3.2093	103	3.2102	-0.010
32.995	17	3.1523	211	3.1506	0.018
34.282	2	3.0372	202	3.0351	0.25
35.413	1	2.9432	113	2.9433	0.000
37.176	6	2.8082	212	2.8066	0.022
40.161	7	2.6072	220	2.6063	0.013
40.898	3	2.5622	203	2.5629	-0.013
41.715	8	2.5142	104	2.5142	-0.001
44.184	5	2.3801	114	2.3796	0.010
46.296	1	2.2771	311	2.2777	-0.013
49.451	1	2.1401	005	2.1397	0.011
50.369	3	2.1036	223	2.1042	-0.016
51.673	12	2.0540	105	2.0549	-0.023
54.619	2	1.9511	313	1.9513	-0.005
55.921	1	1.9092	322	1.9098	-0.021
57.839	2	1.8511	205	1.8505	0.021
58.114	3	1.8431	400	1.8430	0.004
59.861	2	1.7941	215	1.7948	-0.027
60.271	3	1.7830	006	1.7830	-0.002
60.609	4	1.7740	323	1.7737	0.010
61.255	2	1.7571	314	1.7573	-0.011
64.094	4	1.6870	116	1.6871	-0.003
65.755	3	1.6490	420	1.6484	0.27
66.690	1	1.6285	421	1.6292	-0.031
67.797	1	1.6050	206	1.6051	-0.005
69.571	3	1.5690	216	1.5684	0.035
71.721	2	1.5280	007	1.5283	-0.015
73.460	1	1.4968	107,423	1.4964	0.017
74.563	3	1.4778	325	1.4782	-0.024

This journal is © The Royal Society of Chemistry 2002

g NaOH (Merck) in 20 ml distilled water. Then the solution was brought to the boiling point. Subsequently, 0.33 ml TiCl₄ (Merck) hydrolyzed in 10 ml distilled water was added to the above solution. After cooling to room temperature the mixture was homogenized for 40 min by a mechanical mixer at 200 rpm. The gel was then transferred into 10 ml teflon-lined autoclaves. The crystallization was performed under static conditions at 200 °C for 16 h. After fast cooling with flowing H₂O the samples were filtered and washed with distilled water and dried at 100 °C for 2–3 h.

SEM studies (SEM Philips 515) of the run product display 30-40 µm aggregates built of more or less spatially oriented crystal plates (Fig. 1). The XRD powder pattern was collected in a step-scan regime (step 0.02° and time 3 s) on a PW3710 diffractometer with CuK_{α} radiation in the range 2 θ 5–70° and unambiguously identified the phase as being JDF-L1 (Fig. 2). Indexation and cell parameters refinement were performed using strip-chart powder XRD data recorded on DRON 3M (Russia) diffractometer (Fe-filtered CoK_{α} radiation, λ = 1.7903 Å, room temperature). The measurement was performed at 1° 2 θ min⁻¹ detector speed (scintillation counter) and 720 mm h⁻¹ chart speed in the range $2\theta 8-75^{\circ}$. The primary powder XRD data standardization, interpretation, and presentation of JDF-L1 were performed with PDI package,7 which provides indexation for known unit cell parameters⁴ and refinement of the latter by a nonlinear least-squares procedure for minimizing the SUM $[Q (exp) - Q (cal)]^2$: $Q = 1/d^2$. Table 1 contains data of the indexed powder pattern of JDF-L1 with figures-of-merit $F_{30} = 46.41 \ (0.013, 49) \ \text{and} \ M_{20} = 50.84.$ The refined unit cell parameters in space group $P42_{12} \ (\text{no. } 90) \ \text{are} \ a = b = 7.3719(13) \ \text{\AA}, \ c = 10.6983(11) \ \text{\AA}.$

This work was realized with financial support from the project under reference SA(EST CLG 977518)5941 approved by the Advisory Panel on Environmental and Science & Technology of the Scientific and Environmental Affairs Division, NATO, Brussels and by a Marie Curie Fellowship of the European Community under contract number HPMT-CT-2000-00138.

Notes and references

- M. W. Anderson, O. Terasaki, T. Oshuna, P. J. O'Malley, A. Philippou, S. P. Mackay, A. Ferreira, J. Rocha and S. Lidin, *Philos. Mag. B*, 1995, **71**, 813.
- 2 Z. Lin, J. Rocha, P. Brandao, A. Ferreira, A. P. Esculcas, J. D. Pedrosa de Jesus, A. Philippou and M. W. Anderson, *J. Phys. Chem.*, 1997, 101, 7114.
- 3 H. Du, M. Fang, J. Chen and W. Pang, J. Mater. Chem., 1996, 6, 1827.
- 4 M. A. Roberts, G. Sankar, J. M. Thomas, R. H. Jones, H. Du, M. Fang, J. Chen, W. Pang and R. Xu, *Nature*, 1996, **381**, 401.
- 5 R. Murugavel and H. W. Roesky, Angew. Chem., Int. Ed. Engl., 1997, 36(5), 477.
- 6 J. Rocha and M. W. Anderson, Eur. J. Inorg. Chem., 2000, 801.
- 7 J. Macicek, PDI: A powder data interpretation Package, Internal report of the Institute of Applied Mineralogy, Sofia, 1988, p. 36 (in Bulgarian).