## A monomeric selenium(IV) diimide and a dimeric seleninylamine

## Tiina Maaninen,<sup>a</sup> Risto Laitinen<sup>\*a</sup> and Tristram Chivers<sup>\*b</sup>

<sup>a</sup> Department of Chemistry, University of Oulu, P.O. Box 3000, FIN-90401, Oulu, Finland. E-mail: risto.laitinen@oulu.fi

<sup>b</sup> Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4. E-mail: chivers@ucalgary.ca

Received (in Purdue, IN, USA) 21st May 2002, Accepted 3rd July 2002 First published as an Advance Article on the web 18th July 2002

The selenium(IV) diimide AdN=Se=NAd (Ad = 1-adamantyl) adopts a monomeric structure with a Z,E configuration in the solid state whereas the seleninylamine OSe( $\mu$ -NBu<sup>t</sup>)<sub>2</sub>SeO crystallizes as the *cis*-dimer.

Selenium diimides RN=Se=NR, the aza analogues of SeO<sub>2</sub>, are efficient *in situ* reagents for allylic amination of olefins and 1,2-diamination of 1,3-dienes.<sup>1</sup> Although the first example, Bu<sup>t</sup>N=Se=NBu<sup>t</sup> (**1a**) was reported more than 25 years ago<sup>1</sup> and the hybrid imido–oxo system Bu<sup>t</sup>NSeO (**2**) has been known since 1986,<sup>2</sup> their solid-state structures have not been determined. Both of these imidoselenium(IV) compounds are thermally unstable oils. For example, Bu<sup>t</sup>N=Se=NBu<sup>t</sup> decomposes at room temperature to give the six-membered ring (SeNBu<sup>t</sup>)<sub>3</sub> as the major product.<sup>3</sup> Multinuclear NMR studies of **1a** indicate a monomeric structure with a *Z*,*E* configuration in



solution.<sup>4</sup> An N,N'-chelated adduct SnCl<sub>4</sub>[(Bu<sup>t</sup>N)<sub>2</sub>Se] (THF)<sub>2</sub> has been structurally characterized.<sup>5</sup>

Tellurium(IV) diimides adopt dimeric structures, *e.g.* Bu'N-Te( $\mu$ -NBu<sup>1</sup>)<sub>2</sub>TeNBu<sup>1</sup>,<sup>6</sup> whereas the extensively studied sulfur(IV) diimides RN=S=NR are invariably monomeric in the solid state, as well as in solution or in the gas phase.<sup>7,8</sup> DFT calculations on the model systems MeN=E=NMe (E = S, Se, Te) predict that the dimerization is highly exothermic for E = Te and endothermic for E = S, in agreement with experimental observations, but approximately thermoneutral for E = Se.<sup>9</sup> Consequently, it is not clear whether a monomeric or a dimeric structure will be preferred for selenium(IV) diimides. We describe here the syntheses † and X-ray structures ‡ of AdN=Se=NAd (**1b**, Ad = 1-adamantyl) and **2** representing the first solid-state structure determinations of (a) a selenium(IV) diimide and (b) a seleninylamine.

The new selenium(IV) diimide AdN=Se=NAd (1b) was obtained in 95% yield by the reaction of 1-adamantylamine with SeCl<sub>4</sub> in THF.<sup>†</sup> The adamantyl derivative 1b is a moisturesensitive, yellow crystalline solid, which decomposes at ca. 125 °C. An X-ray crystal structure analysis of 1b§ revealed a monomeric structure with a Z,E configuration (Fig. 1), consistent with the conclusions from NMR studies of 1a.2 Furthermore the NMR parameters for THF solutions of 1b,  $\delta(^{14}N) = +110$  and +1,  $\delta(^{77}Se) = 1651$  are in excellent agreement with those reported for **1a**,  $\delta(^{14}N, \text{THF}) = +106.4$ and +1.5,  $\delta(^{77}\text{Se}, \text{ toluene}) = 1654,^4$  indicating that these two Se(IV) diimides have the same structure in solution. The Se=N bond lengths in 1b are significantly different, 1.679(8) and 1.732(7) Å [cf. the predicted double bond value of ca. 1.65 Å<sup>10</sup> and  $d(SeN) = 1.710(3) \text{ Å in } SnCl_4[(^{t}BuN)_2Se](THF)_2].^5$  The longer bond is associated with a wider bond angle at nitrogen  $\angle$  $C(1)-N(1)-Se(1) = 125.0(6)^{\circ} [cf. \angle C(11)-N(2)-Se(1) =$ 



**Fig. 1** Structure of AdN=Se=NAd (**1b**). Selected bond distances [Å] and bond angles [°]: Se(1)–N(1) 1.679(8), Se(1)–N(2) 1.732(7), N(1)–Se(1)–N(2) 113.0(3), C(1)–N(1)–Se(1) 125.0(6), C(11)–N(2)–Se(1) 117.6(5).

117.6(5)°] suggesting that steric effects are responsible for this structural feature.

In contrast to the structure of **1b**, the seleninylamine **2** adopts a dimeric structure  $O=Se(\mu-NBu^{t})_2S=O$  in which the two exocyclic oxo substituents are in a *cis* configuration (Fig. 2).§ The Se=O bond length of 1.621(2) Å is comparable to the value of 1.628(4) Å found for the unsymmetrical imido–oxo system *cis*-Bu<sup>t</sup>NSe( $\mu$ -NBu<sup>t</sup>)\_2SeO.<sup>3</sup> The bridging Se–N bond lengths of 1.881(2) and 1.888(2) Å are slightly longer than the value of 1.86 Å predicted for Se( $\nu$ )–N single bonds,<sup>10</sup> but they are consistent with the bridging Se–N bonds of 1.862(4)–1.943(4) Å in *cis*-Bu<sup>t</sup>NSe( $\mu$ -NBu<sup>t</sup>)\_2SeO.<sup>3</sup>

These results complete the solid-state structural characterization of the isoelectronic series SeO<sub>2</sub>, Se(O)NR and Se(NR)<sub>2</sub>. In contrast to the polymeric chain structure of SeO<sub>2</sub> (**3**),<sup>11</sup> the selenium(rv) diimides **1a** and **1b** are monomeric in the solid state and in solution, whereas the hybrid imido–oxo system **2** is dimeric.

Interestingly, the dimer trans-OSe( $\mu$ -O)<sub>2</sub>SeO (4) has been identified in the vapour of selenium dioxide by a matrix IR study.<sup>12</sup> The sulfur analogues of 1, 2 and 3 are all monomeric,<sup>13</sup>



**Fig. 2** Structure of OSe( $\mu$ -NBu<sup>t</sup>)<sub>2</sub>SeO (2). Selected bond distances [Å] and bond angles [°]: Se(1)–O(1) 1.621(2), Se(1)–N(1) 1.881(2), Se(1)–N(2) 1.888(2), O(1)–Se(1)–N(1) 104.4(1), O(1)–Se(1)–N(2) 104.9(1), N(1)– Se(1)–N(2) 79.1(1),  $\Sigma < N(1)$  337.1,  $\Sigma < N(2)$  337.0. \* Symmetry transformations used to generate equivalent atoms:  $x, -y + \frac{1}{2}, z$ 



whereas tellurium(IV) diimides are dimeric<sup>6</sup> and tellurium(IV) oxide is a three-dimensional polymer.14

Financial support from the Natural Sciences and Engineering Research Council (Canada), the Academy of Finland, and the Finnish Cultural Foundation (T. M.) is gratefully acknowledged.

## Notes and references

All manipulations were carried out under anaerobic and anhydrous conditions. The seleninylamine 2 was prepared by the literature procedure<sup>2</sup> and recrystallized from THF at -20 °C. THF was dried and distilled under a nitrogen atmosphere over Na-benzophenone. 1-Adamantylamine (Aldrich) and SeCl<sub>4</sub> (Aldrich) were used without further purification.

The selenium diimide 1b was obtained by adding dropwise a solution of 1-adamantylamine (2.723 g, 18.0 mmol) in THF (15 mL) to a solution of  $SeCl_4$  (0.662 g, 3.0 mmol) in THF (30 mL) at -80 °C. The reaction mixture was stirred at -78 °C for 45 min and then allowed to warm up to room temperature. After 30 min the white precipitate of [C10H15NH3]Cl was removed by filtration and the solvent was removed under vacuum to give vellow microcrystalline 1b (1.076 g, 2.85 mmol, 95%) [mp 125 °C (dec.) with sublimation]. X-Ray quality crystals were grown from THF solution at -24 °C. <sup>14</sup>N NMR (d<sub>8</sub>-THF, 25 °C):  $\delta = +110$  and 1 ppm; <sup>77</sup>Se NMR (toluene, 25 °C):  $\delta$  = 1651 ppm. <sup>14</sup>N and <sup>77</sup>Se NMR spectra were recorded on a Bruker DPX-400 spectrometer operating at 28.915 and 76.311 MHz, respectively. The spectral widths were 14.49 and 90.09 kHz, yielding the respective resolutions of 14.15 and 1.37 Hz/data point. The <sup>14</sup>N pulse width was 12  $\mu s$  and the  $^{77}Se$  pulse width was 6.7  $\mu s,$  corresponding to nuclear tip angles of 21 and 46°. The 14N chemical shifts are reported relative to CH<sub>3</sub>NO<sub>2</sub>(1) at 25 °C. The <sup>77</sup>Se NMR spectrum is referenced externally to a saturated aqueous solution of SeO<sub>2</sub> and the chemical shifts are reported relative to neat Me<sub>2</sub>Se(l) at 25 °C [ $\delta$ (Me<sub>2</sub>Se) =  $\delta$ (SeO<sub>2</sub>) + 1302.6].

<sup>‡</sup> Diffraction data of 1b and 2 were collected on a Nonius Kappa CCD diffractometer using graphite-monochromated Mo K $\alpha$  radiation ( $\lambda$  = 0.71073 Å) and recording 360 frames via  $\varphi$ -rotation ( $\Delta \varphi = 1^{\circ}$ ; two times 40 s per frame). The data were corrected for Lorentz and polarization effects, and an empirical absorption correction was applied to the net intensities. The structure was solved by direct methods<sup>15a</sup>and refined on F<sup>2.15b</sup> The calculated hydrogen atoms were included in the final refinement (methyl groups: C-H = 0.98 Å; methylene groups: C-H = 0.99 Å; tertiary carbon: C-H = 1.00 Å). The scattering factors for the neutral atoms were those incorporated with the programs.

Crystal data for **1b**:  $C_{20}H_{30}N_2Se$ , M = 377.42, yellow plates (0.20 ×  $0.20 \times 0.12 \text{ mm}^3$ ), monoclinic, space group  $P2_1/c$ , a = 10.986(2), b =  $6.624(1), c = 25.059(5) \text{ Å}, \beta = 99.69(3)^{\circ}, V = 1797.6(6) \text{ Å}^3, Z = 4, \rho \text{ calc.}$ = 1.395 g cm<sup>-3</sup>,  $\mu$ (MoK<sub> $\alpha$ </sub>) = 2.091 mm<sup>-1</sup>,  $\lambda$ (MoK<sub> $\alpha$ </sub>) = 0.71073 Å, T = -100(2) °C, F(000) = 792. Total no. of reflections was 14846 (2321) unique).  $R_1 = 0.0765$  and  $wR_2 = 0.1669$  [1735 reflections with  $F_0 > 0.1669$  $4\sigma(F_0)$ ]  $(R_1 = 0.1076 \text{ and } wR_2 = 0.1839 \text{ all data}); w = [\sigma(F_0^2) + \sigma(F_0^2)]$  $(0.0504P)^2 + 11.65P$ ]<sup>-1</sup>, where  $P = \max[(F_o^2, 0) + 2F_c^2]/3$ . S = 1.167 for 209 parameters. Maximum and minimum values in the final difference Fourier synthesis are 0.710 and -0.648 e Å<sup>-3</sup>.

Crystal data for 2: C<sub>4</sub>H<sub>9</sub>NOSe, M = 166.08, yellow block (0.30 × 0.15 × 0.10 mm), orthorhombic, space group *Pnma*, a = 19.517(4), b = 11.499(2), c = 5.672(1) Å, V = 1273.0(4) Å<sup>3</sup>, Z = 8,  $\rho$  calc. = 1.733 g  $\text{cm}^{-3}, \mu(\text{MoK}_{\alpha}) = 5.790 \text{ mm}^{-1}, \lambda(\text{MoK}_{\alpha}) = 0.71073 \text{ Å}, T = -153(2) \text{ °C},$ F(000) = 656. Total no. of reflections was 15441 (1608 unique).  $R_1 =$ 0.0360,  $wR_2 = 0.0826$  [1404 reflections with  $F_0 > 4\sigma(F_0)$ ]  $(R_1 = 0.0439)$ and  $wR_2 = 0.0861$  all data);  $w = [\sigma(F_0^2) + (0.0395P)^2 + 1.82P]^{-1}$ , where  $P = \max[(F_o^2, 0) + 2F_c^2]/3$ . S = 1.102 for 78 parameters. Maximum and minimum values in the final difference Fourier synthesis are 0.666 and -0.904 e Å-3.

CCDC reference numbers 189238 (1b) and 189239 (2). See http:// www.rsc.org/suppdata/cc/b2/b205011k/ for crystallographic data in CIF or other electronic format.

- 1 (a) K. B. Sharpless, T. Hori, L. K. Truesdale and C. O. Dietrich, J. Am. Chem. Soc., 1976, 98, 269; (b) G. Li, H.-T. Chang and K. B. Sharpless, Angew. Chem., 101. Ed. Engl., 1996, 35, 451.
  M. Herberhold and W. Jellen, Z. Naturforsch., B, 1986, 41b, 144.
- 3 T. Maaninen, T. Chivers, R. Laitinen, G. Schatte and M. Nissinen, Inorg. Chem., 2000, 39, 5341.
- 4 B. Wrackmeyer, B. Distler, S. Gerstmann and M. Herberhold, Z. Naturforsch., B, 1993, 48b, 1307.
- 5 J. Gindl, M. Björgvinsson, H. W. Roesky, C. Freire-Erdbrügger and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1993, 811.
- 6 (a) T. Chivers, X. Gao and M. Parvez, J. Am. Chem. Soc., 1995, 117, 2359; (b) T. Chivers, X. Gao and M. Parvez, Inorg. Chem., 1996, 35, 9
- 7 (a) I. Yu. Bagryanskaya, Y. V. Gatilov, M. M. Shakirov and A. V. Zibarev, Mendeleev Commun., 1994, 167; (b) I. Yu. Bagryanskaya, Y. V. Gatilov, M. M. Shakirov and A. V. Zibarev, Mendeleev Commun., 1994, 136.
- 8 (a) D. G. Anderson, H. E. Robertson, D. W. H. Rankin and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1989, 859; (b) H. S. Rzepa and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1988, 3051.
- 9 N. Sandblom, T. Ziegler and T. Chivers, Inorg. Chem., 1998, 37, 354
- 10 M. Björgvinsson and H. W. Roesky, Polyhedron, 1991, 10, 2353.
- 11 J. D. McCullough, J. Am. Chem. Soc., 1937, 59, 789.
- 12 G. A. Ozin and A. Vander Voet, J. Mol. Struct., 1971, 10, 173.
- 13 A. F. Hill, Adv. Organomet. Chem., 1994, 36, 159.
- 14 (a) O. Lindqvist, Acta Chem. Scand., 1968, 22, 977; (b) H. Beyer, Z. Kristallogr., 1967, 124, 228.
- 15 (a) G. M. Sheldrick, SHELXS-97. Program for Crystal Structure Determination, University of Göttingen, 1997; (b) G. M. Sheldrick, SHELXL-97. Program for Crystal Structure Refinement, University of Göttingen, 1997.