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Hydrogen-bonding strengths in the solid state are quantita-
tively determined by the accurate measurement of 15N–15N
J couplings using a straightforward 2D MAS NMR spin-
echo approach.

Hydrogen bonds are one of the most important structure-
directing interactions in chemistry, as is evidenced by their role
in controlling self-assembly in supramolecular chemistry and in
determining the secondary structure of proteins and nucleic
acids. Indirect evidence for the presence of a hydrogen bond can
be provided by the positions of hetero- and hydrogen atoms as
determined from a diffraction study, or by the observation of
characteristic IR vibration frequencies or NMR chemical shifts.
Recently, J couplings across hydrogen bonds have been
observed in solution-state NMR spectra of bio-macromole-
cules1 and also smaller molecules.2 In this way, hydrogen bonds
are directly detected, since the presence of such a hydrogen-
bond mediated J coupling requires a bond. In solid-state NMR,
the detection of J couplings is a challenge, since they are usually
obscured even under magic-angle spinning (MAS) by the
broadenings due to anisotropic interactions. In the last few
years, solid-state NMR experiments have been developed which
utilize J couplings to establish homonuclear single-quantum3

and double-quantum4 as well as heteronuclear correlations.5
Very recently, we have presented 15N INADEQUATE solid-
state NMR spectra of 1 which demonstrate the presence of a
15N–15N J coupling across the hydrogen bond (N1–N9);6 we
believe this to be the first observation of a hydrogen-bond
mediated J coupling in the solid state, and hence the first-ever
direct detection of a solid-state hydrogen bond. Here, the
hydrogen-bond mediated 15N–15N J couplings in 1 and 2 are

accurately determined (±0.2 Hz) by a straightforward 2D spin-
echo MAS approach. In this way, the hydrogen-bond strengths
can be quantified.

The investigated 6-aminofulvene-1-aldimines differ in their
molecular structure solely with regard to the triazole (1) or
pyrrole (2) substituent; their synthesis as well as X-ray single-
crystal and solution-state NMR characterisations are described
in ref. 7. The molecules were fully 15N-labelled. Solid-state
NMR experiments were performed on a Bruker DSX 500 NMR
spectrometer using a MAS frequency of 12.0 kHz. Other
experimental details are available as ESI.†

The line widths observed for rigid solids in MAS experiments
are typically at least 10 s of Hz—the line widths in a 15N cross-
polarisation (CP) MAS spectrum of 1 are 50–70 Hz.6 Thus, only

splittings due to relatively large J couplings can be observed. In
particular, the 15N–15N J couplings in 1 and 2—the solution-
state values are listed in Table 1—are too small to give rise to
an observable splitting in the 15N CP MAS spectra. In NMR, the
simple Carr–Purcell spin-echo (t–p–t) sequence achieves the
refocusing of evolution due to all terms that appear as offsets,
which may arise from, e.g., a distribution of chemical shifts or
imperfect decoupling. Importantly, in the solid state, the ‘non-
refocusable’ line width, DA = 1/pT2A, which is defined by the
time constant, T2A, measured in such a spin-echo experiment, is
usually significantly less than the ‘apparent’ line width.4b,9

Thus, if spin-echoes are incorporated into solid-state NMR
experiments, it is possible to detect and utilize J couplings, even
if no splitting can be observed in the normal spectrum. Spin
echoes are important elements of the solid-state INADE-
QUATE4a and refocused INADEQUATE4b experiments em-
ployed in ref. 6.

We demonstrate here that rotor-synchronised 2D spin-echo
solid-state NMR experiments are a straightforward method for
the accurate measurement of J couplings, especially suitable for
the case where no splitting is observable in the normal spectrum.
For a 15N nucleus which is J-coupled to a single non-equivalent
neighbour, the dependence of the integrated frequency-domain
signal on the spin-echo delay, t, is given by:

S(t) = A cos(2pJt) exp(22t/T2A) (1)

To extract the J coupling and the effective dephasing time, T2A,
it is simply necessary to record a series of 1D experiments,
where the spin-echo sequence follows CP from 1H to 15N, and
fit the integrated intensities in the frequency-domain spectra to
eqn. (1). Alternatively, it can be recognised that eqn. (1)
describes a free-induction decay, where Fourier transformation
(FT) with respect to 2t yields a pair of lines with width DA =
1/pT2A at ± J/2, i.e., the familiar J-coupled doublet. This, thus,
suggests a 2D experiment, CP 2 t1/2 2 p 2 t1/2 2 t2, which is
the solid-state equivalent of homonuclear J spectroscopy.10 In
order to obtain an amplitude-modulated signal with respect to t1,
and hence pure absorption-mode lineshapes after FT in both
dimensions, a ‘z-filter’ (p/2 2 2µs 2 p/2)8 can be inserted
before t2. This z-filtered spin-echo experiment was employed

† Electronic supplementary information (ESI) available: additional experi-
mental details. See http://www.rsc.org/suppdata/cc/b2/b205324a/

Table 1 Parameters extracted from the fits to the spin-echo spectra

Molecule Site 1J/Hz 2hJ/Hz T2A/ms [e2]a

1 bN1A 11.9 ± 0.1 — 248 ± 15 0.0019
1 bN1 — 7.4 ± 0.1 149 ± 10 0.0009
1 cN9 12.0 ± 0.1 7.2 ± 0.1 194 ± 15 0.0009
1 — 11.8d 8.6d — —
2 bN1A 10.3 ± 0.1 — 255 ± 20 0.0026
2 bN1 — 8.1 ± 0.2 90 ± 10 0.0110
2 cN9 10.2 ± 0.4 8.0 ± 0.3 159 ± 25 0.0059
2 — 10.3d 9.0d — —
a e2 = S[Ifit(n) 2 Iexp(n)]2/SIexp(n)2. b Fit to A cos(2pJt) exp(22t/T2A).
c Fit to A cos(2pJt) cos(2pJAt) exp(22t/T2A). d Solution-state NMR
(CDCl3) from (1) ref. 7a and (2) ref. 7b.
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here, with 1H TPPM decoupling11 at a rf field of 100 kHz being
applied after CP.

Fig. 1 presents plots of experimental S(t) against t for the
N1A, N1, and N9 resonances in 1 and 2, together with the best-fit
analytical curves—see Table 1. Zero crossings are observed in
all plots. A consideration of eqn. (1) reveals that such zero-
crossings occur at t = n/4J, where n is an odd integer. Thus, the
observation of the first zero-crossing at t = 1/4J immediately
gives a good estimate of J, e.g., for N1A and N1 in 1 zero
crossings are observed at about 21 and 33 ms, corresponding to
J = 12 and 7.5 Hz, respectively. The N9 nitrogen is J-coupled
to both N1A and N1, and there is thus an additional cos(2pJAt)
modulation, and two zero-crossings corresponding to the two J
couplings are observed. Comparing the plots for 1 and 2, the two
J couplings are clearly closer together in value in 2.

A 2D spin-echo spectrum of 1 is shown in Fig. 2 together with
extracted rows for the four distinct 15N resonances. For the
equivalent N3A and N4A nitrogens, there is no observable J
coupling, and a single resonance at zero frequency is ob-
served—in a plot of S(t) against t (not shown) no zero crossing
is observed. For N1, N1A, and N9, the refocused line widths, DA,
are sufficiently small to allow the familiar J coupling patterns to
be identified—for N9, the two resonances at ±{1J(N9,N1A)—
2hJ(N1…H…N9)} are not resolved. It is to be noted that the J
couplings and effective dephasing times could be equally
determined from a fit of these frequency-domain spectra.

Considering both experimental values obtained from solu-
tion-state NMR of RNA and DNA fragments and quantum-
chemical calculations, 2hJ(Ni…H…Nj) increases with decreas-
ing Ni…Nj and increasing Ni–H (Ni is the donor) distances, and
is thus a measure of hydrogen bond strength.12 Comparing the
2hJ(N1…H…N9) couplings for the two molecules given in
Table 1, a smaller value is found for 1 in both the solid- and
solution-state, indicating a weaker hydrogen-bond. This conclu-
sion is supported by the 1H chemical shifts of the hydrogen-
bonded proton (determined by 1H MAS (30 kHz) NMR, spectra
not shown) being 11.5 and 11.9 ppm in 1 and 2, respectively.
The N1…N9 distances given by the X-ray single-crystal

structures of 2.84 Å in 1 and 2.83 Å in 2 are identical within the
experimental error,7a,7b i.e., the difference is most likely
manifested in a harder-to-detect difference in the proton
position. Table 1 also compares the solid- and solution-state J
couplings: while the solid- and solution-state 1J(N9,N1A) values
are very similar, the solid-state 2hJ(N1…H…N9) values are
about 1 Hz smaller than those measured in solution for both 1
and 2. It, thus, appears that the hydrogen bonds are weaker in the
solid state than in solution.

Our approach is, of course, not restricted to 15N NMR; as will
be described elsewhere, 13C experiments carried out on fully-
labelled amino acids and partially-labelled cellulose allow, in
addition to the determination of the J couplings, the assignment
of the resonances and the determination of the degree of
enrichment, respectively, while 31P experiments have been used
to characterise P–O–P bonds. We note that 31P–31P J couplings
have been extracted from absolute-value 2D spectra obtained
using the spin-echo sequence without the z-filter.13 We have
also very recently used the heteronuclear equivalent of these
spin-echo experiments to measure 13C–1H J couplings in
surface species.14

To conclude, we have shown that a 2D spin-echo MAS solid-
state NMR experiment allows the accurate measurement of
small J couplings, the splittings due to which are lost under the
residual line broadening in a CP MAS experiment. In this way,
hydrogen-bond mediated 15N–15N J couplings, which provide
direct evidence for the existence of hydrogen bonds and are a
direct measure of hydrogen-bond strength, have been measured
for 1 and 2. Many related applications to, e.g., supramolecular
systems and fully-labelled biomolecules can be envisaged.
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Fig. 1 Plots of S(t) against t for the N1, N1A, and N9 resonances in 1and 2,
together with the best-fit analytical curves (see Table 1).

Fig. 2 A 15N 2D MAS spin-echo (with z-filter) spectrum of 1, together with
extracted rows corresponding to the different 15N resonances.
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