Enhanced cooperative binding of oligonucleotides to form DNA duplexes mediated by metal ion chelation[†]

Imogen Horsey, Yamuna Krishnan-Ghosh and Shankar Balasubramanian*

University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW. E-mail: sb10031@cam.ac.uk; Fax: 44 1223 336913; Tel: 44 1223 336347

Received (in Cambridge, UK) 26th June 2002, Accepted 19th July 2002 First published as an Advance Article on the web 5th August 2002

Metal chelating iminodiacetic acid moieties were appended to abutting ends of two 9-mer oligonucleotides designed to hybridize contiguously on an 18-mer target. Chelation of 1 equivalent of Gd³⁺ cooperatively increases affinities of the oligonucleotides to the single stranded DNA target as evidenced by a 15 °C increase in T_m of the complex.

There is significant interest in new chemical strategies to enhance the binding of oligonucleotides to nucleic acid targets. One driving force is that single-stranded short oligonucleotides possess attractive features for therapeutic applications,^{1,2} but their affinities for the nucleic acid target are low. Strategies to enhance their affinity include using intercalators,³ positive charges,⁴ modified nucleobases or nucleosides⁵ or introducing cooperative interactions between two oligonucleotides^{6,7} that bind to the same target molecule. Interstrand metal chelation between complementary unnatural base pairs has been used to enhance duplex stability.⁸ In this paper we report the use of metal ion chelation between two short oligonucleotides that assemble on a single stranded DNA target leading to enhanced binding.

The strategy has employed metal chelation at the ends of two oligonucleotides hybridized to the same target (Fig. 1). Two 9-mer oligodeoxyribonucleotides A_{AM} and B_{AM} (Fig. 2) were designed to bind to adjacent sites on the 18-mer oligonucleotide, C_0 with predicted free energies of -8.8 kcal mol⁻¹ and -9.1 kcal mol⁻¹, respectively.⁹

Fig. 1 Metal chelation to enhance oligonucleotide binding.

Iminodiacetic acid (IDA), forms stable bis-chelates with several metal ions.¹⁰ However, Gd^{3+} was chosen since the free energy of formation of a 2:1 complex of IDA and Gd^{3+} (-7.3 kcal mol⁻¹)¹¹ is relatively close to the associated hybridization energies of A_{AM} and B_{AM} . Amino-modified oligonucleotides A_{AM} and B_{AM} were appended *via* an amide linkage to IDA moieties to give A_{IDA} and B_{IDA} respectively.[‡] UV melting profiles§ were measured for various combinations of oligonu-

 \dagger Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b206054j/

cleotides and Gd^{3+} , with the target C_0 (Table 1) which afforded the melting temperature, $T_{\rm m}$.¹² The amino-modified oligonucleotides A_{AM} and B_{AM} , individually bound to C_0 , gave comparable $T_{\rm m}$ values that were in good agreement with predicted values (Table 1).⁹ The simultaneous binding of A_{AM} and \mathbf{B}_{AM} to \mathbf{C}_{0} resulted in a 2.7 ± 1 °C increase in T_{m} (Table 1), indicating a small cooperative effect possibly due to π interactions of the terminal bases.6b Addition of Gd3+ to the ternary complex of A_{AM} and B_{AM} bound to C_0 showed no change in $T_{\rm m}$, suggesting that unchelated Gd³⁺ did not have any effect on duplex stability. When the IDA modified analogues, A_{IDA} and B_{IDA} were each individually bound to C_0 (Table 1), there was a 3.7 \pm 1 °C decrease in the $T_{\rm m}$ value as compared to A_{AM} and B_{AM} . This may be an electrostatic consequence of replacing the positively charged amino group by a negatively charged carboxylate. However, the simultaneous binding of both A_{IDA} and B_{IDA} to C_0 showed a 3.2 ± 1 °C increase in T_m (Table 1) indicating some cooperativity, contrary to what might be expected on the basis of electrostatic interactions alone.

The simultaneous binding of A_{IDA} and B_{IDA} to C_0 was investigated in the presence of 1 mol equivalent of $Gd^{3+}(2 \mu M)$ with various incubation times (t). The melting curve showed two transitions shown in the first derivative plot of absorbance (A) vs. temperature (T) (Fig. 3A). The first transition corresponds to a species melting at 28 $^{\circ}$ C, consistent with unmetallated species based on the control experiment lacking Gd³⁺ (Table 1). The second transition indicates a higher stability species melting at 43 °C, consistent with metallated species (Table 1). It was apparent that in the presence of 1 mol equiv. Gd³⁺, the proportion of high $T_{\rm m}$ species increased with time (Fig. 3A) at the expense of the low $T_{\rm m}$ species. That 1 mol equiv. Gd³⁺ (2 μ M) resulted in ~80% conversion to the high $T_{\rm m}$ species at t = 30 h (Fig. 3B) suggests a Gd³⁺ stoichiometry of one in the metallated DNA duplex. The addition of excess Gd³⁺ (40 μ M) to the complex of A_{IDA} and B_{IDA} bound to C₀ resulted in the high $T_{\rm m}$ species being formed exclusively. Fig. 3B shows the melting curves of A_{IDA} and B_{IDA} bound to C_0 without Gd^{3+}

Table 1 $T_{\rm m}$ values calculated from UV melting analysis of IDA-modified and unmodified 9-mers binding to the target 18-mer under various conditions

Oligonucleotides	$[Gd^{3+}]/\mu M$	$T_{\rm m}{}^{a/\circ}{ m C}$		
A _{AM} , C ₀	0	28.9 (28.2)		
B _{AM} , C ₀	0	28.7 (29.4)		
AAM, BAM, Co	0	31.5		
AAM, BAM, Co	40^{b}	30.5		
A_{IDA}, C_0	0	25.3		
B_{IDA}, C_0	0	24.8		
A_{IDA}, C_0	40 ^b	25.2		
B_{IDA}, C_0	40 ^b	24.2		
A_{IDA}, B_{IDA}, C_0	0	28.3		
A_{IDA}, B_{IDA}, C_0	2^c	$27.5, 42.6^d$		
A_{IDA}, B_{IDA}, C_0	40 ^b	39.6		
D_0, C_0	0	59.4 (56.4)		

^{*a*} Associated errors are ± 1 °C, $T_{\rm m}$ values predicted by nearest neighbour analysis are in parantheses;¹⁰ Incubation time. ^{*b*} 30 h. ^{*c*} 5 min. ^{*d*} Dual transitions were obtained.

DOI: 10.1039/b206054j

Table 2 Values of connection Gibbs energy (ΔG_S) and cooperative energy of interaction (E_{coop}) calculated from UV melting study data

Interacting components	[Gd ³⁺]/ µM	$K_1^a / l \mod^{-1}$	$K_2^a / l \mod^{-1}$	$K_{1+2}/l^2 \text{ mol}^{-2}$	$K_{1,2^b} / l \text{ mol}^{-1}$	$K_{2,1^b}$ /l mol ⁻¹	$\Delta G_{ m s}^{c/}$ kcal mol $^{-1}$	$E_{\rm coop}^{d/d}$ kcal mol ⁻¹
AAM, BAM, Co	0	$3.08 imes 10^{6}$	2.44×10^{6}	2.34×10^{13}	$9.59 imes 10^{6}$	$7.60 imes 10^{6}$	-0.67	-0.74
A _{IDA} , B _{IDA} , C _o	0	$1.14 imes10^6$	9.52×10^{5}	$8.40 imes 10^{12}$	$8.82 imes 10^6$	$7.37 imes 10^{6}$	-0.93	-1.42
A _{IDA} , B _{IDA} , C _o	40^e	$1.21 imes 10^6$	$9.43 imes 10^5$	4.57×10^{15}	$4.85 imes 10^9$	$3.78 imes 10^9$	-4.91	-5.14

^{*a*} K_1 and K_2 = equilibrium constant for binding of A_{AM} (or A_{IDA}) and B_{AM} (or B_{IDA}) to C_0 at 298 K. ^{*b*} $K_{1,2}$ = equilibrium constant for the binding of A_{AM} (or A_{IDA}) on the binary complex of B_{AM} (or B_{IDA}) and C_0 at 298 K; $K_{2,1}$ = equilibrium constant for the binding of B_{AM} (or B_{IDA}) on the binary complex of A_{AM} (or A_{IDA}) and C_0 at 298 K; $K_{2,1}$ = equilibrium constant for the binding of B_{AM} (or B_{IDA}) on the binary complex of A_{AM} (or A_{IDA}) and C_0 at 298 K; $K_{1+2} = K_1K_{2,1} = K_2K_{2,1}$. ^{*c*} ΔG_S was calculated using the Jencks' model (errors are $\pm 4\%$).¹⁴ d E_{coop} was calculated using the Hill model (errors are $\pm 1-3\%$).¹⁵ e Incubation time = 30 h.

Fig. 3 A, First derivative plots of absorbance (*A*) *vs.* temperature (*T*) from the melting curves of A_{IDA} and B_{IDA} bound to C_0 in the presence of varying Gd³⁺ concentrations and incubation times. B, Melting curves of A_{IDA} and B_{IDA} bound to C_0 in the absence and presence of Gd³⁺

and in the presence of 40 μ M Gd³⁺ (t = 30 h). In the presence of Gd³⁺ a significant T_m enhancement of 15 °C was observed, with an associated steepening of the melting curve indicating a more cooperative transition in the presence of the metal. An evaluation of the cooperative enhancement of binding due to metallation, allows comparisons with other systems. Equilibrium constants and associated thermodynamic parameters at 298 K were calculated from the UV melting curves assuming a two-state (all-or-none) model for the melting transition.¹³ Cooperative enhancement was evaluated from the associated thermodynamic parameters for the ternary complex in the cooperative mode using the Jencks¹⁴ and the Hill¹⁵ models, both of which have been widely used in comparable studies.

The formation of a ternary complex, L_1 :T:L₂, from ligands L_1 and L_2 binding to T may be represented by the equilibrium in Scheme 1 with corresponding association constants.^{6c} K_{1+2} represents the overall binding equilibrium between the fully assembled complex and its individual components. The values of K_1 , K_2 and K_{1+2} were calculated for the binding of A_{AM} or B_{AM} to C_0 , A_{IDA} or B_{IDA} to C_0 in the absence and presence of Gd³⁺ (Table 1). The energy corresponding to the cooperative effect expressed as either ΔG_s (the Gibbs connection energy)¹⁴ or E_{coop} (the Gibbs free energy change for cooperative enhancement)¹⁵ were calculated for the binding of A_{IDA} and B_{IDA} to C_0 in the presence and absence of Gd³⁺ (Table 2).

$$L_1 + L_2 + T \xrightarrow{K_1} L_1:T + L_2$$

$$K_2 \xrightarrow{K_{1+2}} L_2:T + L_1 \xrightarrow{K_{1+2}} L_1:T:L_2$$

Scheme 1 Equillibrium for ternary complex formation with associated equilibrium constants. $^{\rm 16}$

The simultaneous binding of A_{AM} and B_{AM} to C_0 afforded an E_{coop} of -0.74 kcal mol⁻¹. Binding of unmetallated ligands A_{IDA} and B_{IDA} to C_0 furnished an E_{coop} value of -1.42 kcal mol⁻¹. However, in the presence of 40 μ M Gd³⁺, binding of A_{IDA} and B_{IDA} to C_0 , with an associated ΔG_s of -4.91 kcal mol⁻¹ and an E_{coop} of -5.14 kcal mol⁻¹ (Table 2). The cooperative enhancement obtained for the present system is favourable in comparison to several studies employing other cooperative approaches for the binding of short (9–12 mer) oligonucleotides to single stranded DNA, where typical E_{coop}

values range between -0.7 to -2.1 kcal mol⁻¹ or show $T_{\rm m}$ enhancements of ~10 °C.^{6a,d,7} Thus metal ion chelation can generate significant enhancement of duplex stability. This paves the way for targeting relatively long sequences of single stranded nucleic acids using shorter oligonucleotide segments under the control of a metal ion switch.

We thank the BBSRC for a studentship to I. S. and Dudley Williams for valuable discussions.

Notes and references

[‡] The synthetic route to A_{IDA} and B_{IDA} was based on a protocol described by Endo and Komiyama.¹⁷ MW (obtained from negative ion ESI-MS): A_{IDA} : 3121 (calc.: 3118); B_{IDA} : 3091 (calc.: 3087).

§ T_m studies were conducted on a Varian-Carey 1E UV-visible spectrophotometer at 260 nm. Each oligonucleotide sample (2 μ M, 0.4 mL) in buffer (10 mM K₃PO₄, pH 7.0, 0.15 M NaCl) was annealed (heated to 90 °C and cooled to 0 °C over 1.5 h) prior to measurements (0–90 °C at a rate of 1°C min⁻¹). Gd³⁺ was added in a volume of 4 μ L. Data processing was carried out on Microcal Origin 4.1 software.

- S. L. Loke, C. A. Stein, S. H. Zhang, K. Mori, M. Nakanishi, C. Subhasinghe, J. S. Cohen and L. M. Neckers, *Proc. Natl. Acad. Sci. USA*, 1989, 86, 3474–3478.
- 2 E. T. Kool, Chem. Rev., 1997, 97, 1473-1487.
- 3 J. S. Sun, J. C. Francois, T. Montenay-Garestior, T. Saison-Behmoaras, V. Roig, N. T. Thuong and C. Hélène, *Proc. Natl. Acad. Sci. USA*, 1989, 86, 9198–9202.
- 4 (a) J. G. Harrison and S. Balasubramanian, *Nucleic Acids Res.*, 1998, 26, 3136–3145; (b) P. Dande, G. Liang, F. X. Chen, C. Roberts, M. G. Nelson, H. Hashimoto, C. Switzer and B. Gold, *Biochemistry*, 1997, 36, 6024–6032.
- 5 (a) K-Y. Lin and M. D. Matteucci, J. Am. Chem. Soc., 1998, 120, 8531–8532; (b) S. Obika, T. Uneda, T. Sugimoto, D. Nanbu, T. Minami, T. Doi and T. Imanishi, *Bioorg. Med. Chem. Lett.*, 2001, 9, 1001–1011; (c) R. Kumar, S. K. Singh, V. K. Rajwanshi, M. Meldgaard and J. Wengel, *Bioorg. Med. Chem. Lett.*, 1998, 8, 2219–2222.
- 6 (a) S. M. Gryaznov and D. H. Lloyd, *Nucleic Acids Res.*, 1993, 21, 5909–5915; (b) S. A. Strobel and P. B. Dervan, *J. Am. Chem. Soc.*, 1989, 111, 7286–7287; (c) N. Colocci, M. D. Distefano and P. B. Dervan, *J. Am. Chem. Soc.*, 1993, 115, 4468–4473; (d) E. R. Kandimalla, A. Manning, C. Lathan, R. A. Byrn and S. Agrawal, *Nucleic Acids Res.*, 1995, 23, 3578–3584.
- 7 Metal chelation has been employed to enhance stability of triplexes: (a) T. Ihara, Y. Takeda and A. Jyo, J. Am. Chem. Soc., 2001, 123, 1772–1773; (b) S. Sueda, T. Ihara and M. Takagi, Chem. Lett., 1997, 11, 1085–1086.
- 8 E. Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg and P. G. Schultz, J. Am. Chem. Soc., 2000, 122, 10714–10715.
- 9 J. J. SantaLucia, H. T. Allawi and P. A. Seneviratne, *Biochemistry*, 1996, 35, 3555–3562.
- 10 D. D. Perrin, in Stability Constants of Metal-ion Complexes: Part B, Organic Ligands, Pergamon Press, Oxford, 1979, pp. 211–220.
- 11 L. Gunnar Sillen and A. E. Martell, Stability constants of Metal-Ligand Complexes; No1, The Chemical Society, London, 1971, pp. 339–341.
- 12 D. Porshcke, Biopolymers, 1971, 10, 1989-2013.
- 13 L. A. Marky and K. J. Breslauer, Biopolymers, 1987, 26, 1601-1620.
- 14 W. P. Jencks, Proc. Natl. Acad. Sci. USA, 1981, 78, 4046-4050.
- 15 T. L. Hill, Cooperativity Theory in Biochemistry: Steady State and Equilibrium Systems, Springer-Verlag, New York, 1985.
- 16 The equilibrium assumes that (a) ligands L_1 and L_2 do not interact and (b) do not compete for each other's binding sites on T.
- 17 M. Endo and M. Komiyama, J. Org. Chem., 1996, 61, 1994–2000.