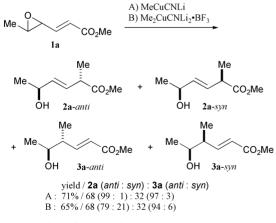
www.rsc.org/chemcomm

-hem **C**omm

Atsushi Hirai, Atsushi Matsui, Kei Komatsu, Keiji Tanino and Masaaki Miyashita*

Division of Chemistry, Graduate School of Science, Hokkaido University, 060-0810 Sapporo, Japan. E-mail: miyasita@sci.hokudai.ac.jp; Fax: (+81)11-706-4920

Received (in Cambridge, UK) 21st June 2002, Accepted 22nd July 2002 First published as an Advance Article on the web 5th August 2002


A highly regio- and stereoselective α -methylation reaction of γ , δ -epoxy- α , β -unsaturated esters was achieved by using a Me₂Zn–CuCN reagent.

Stereoselective construction of polypropionate-derived chains, that are found in many macrolide antibiotics, has been of great importance in synthetic organic chemistry.¹ While aldol-type reactions are widely used in this area, substitution reactions of epoxides with a methyl anion equivalent also provide a powerful method for this purpose. In this connection, we have reported that a γ , δ -epoxy- α , β -unsaturated ester undergoes an S_N2-type substitution reaction with the Me₃Al–H₂O system to afford a γ -methylated δ -hydroxy- α , β -unsaturated ester stereospecifically.²

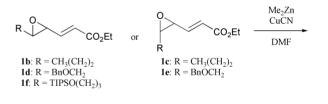
On the contrary, it has been known that introduction of a methyl group at the α -carbon via an $S_N 2'$ -type reaction is quite difficult.³ Thus, treatment of a γ , δ -epoxy- α , β -unsaturated ester with MeCuCNLi led to a 2:1 mixture of the regioisomers, and Me₂CuCNLi₂·BF₃, which effected highly stereoselective $S_N 2'$ methylation of γ -mesyloxy- δ -siloxy- α , β -unsaturated esters,⁴ also failed to give a result (Scheme 1).

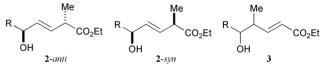
In the course of synthetic studies of natural products having a substituted tetrahydropyran moiety, we became intrigued by this type of transformation. We envisioned that the combined use of Me₂Zn and a copper salt may afford an S_N2^2 product, a useful precursor of an α -methyl δ -lactone, with high regio- and stereoselectivity.⁵

The reactions of the ester **1a** with Me_2Zn and a copper salt are summarized in Table 1. Although the reaction using CuI or CuOTf merely resulted in recovery of the starting material (entries 1 and 2), CuCN gave the desired product **2a**-*anti* in high regio- and stereoselectivity (entry 3). The solvent effect of the reaction with the Me_2Zn -CuCN reagent was then examined (entries 4-6). While the reaction in ether was very sluggish, use

Scheme 1 Reactions of the ester 1a with methylcopper reagents previously reported.

† Electronic supplementary information (ESI) available: IR and NMR spectra of compounds 2b-g. See http://www.rsc.org/suppdata/cc/b2/ b205957f/


Table 1 Reactions of ester 1a with Me₂Zn and CuX^a


Entry	CuX (equiv.)	Solvent	Yield ^b (%)	2a (anti:syn) ^c	3a (anti:syn) ^c	
1 CuI (2)		THF	n.r. ^d		_	
2	CuOTf (2)	THF	$\mathbf{n.r.}^{d}$			
3	CuCN (2)	THF	85	91 (98:2)	9 (86:14)	
4	CuCN (2)	Et_2O	9	n.d.	n.d.	
5	CuCN (2)	MeCN	64	89 (97:3)	11 (92:8)	
6	CuCN (2)	DMF^{e}	86 ^f	90 (99:1)	10 (n.d)	
7	CuCN (0.2)	DMF^{e}	74f	94 (99:1)	6 (n.d)	

^{*a*} The reaction was performed at 0 °C for 2 h unless otherwise noted. ^{*b*} Determined by ¹H NMR spectroscopy unless otherwise noted. ^{*c*} The diastereoselectivities were determined by GLC analyses. ^{*d*} The starting material was recovered unchanged. ^{*e*} The reaction was performed at -23°C. ^{*f*} Combined isolated yield.

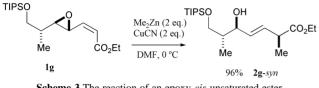
of a more polar solvent, *e.g.* MeCN, exhibited higher reactivity. In particular, DMF was found to enhance the reaction rate dramatically, which allowed us to perform the reaction with a catalytic amount of CuCN at -23 °C (entry 7). It should be noted that the regioselectivity of the present method is much higher than that of the conventional method using organocuprates.³

The excellent results of the preliminary experiments led us to investigate the scope of the present S_N2' methylation reaction (Scheme 2 and Table 2). Since direct assignment of the

Scheme 2 Reactions of the ester with CuCN-Me₂Zn reagent.

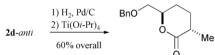
Table 2 Reactions of various γ,δ -epoxy- α,β -unsaturated esters with Me_2Zn–CuCN reagent in DMF^a

Entry	Epoxide	Method	Product	Yield ^b (%)	2:3 ^c	2-anti:2-syn ^d
1	1b	А	2b-anti	81	95:5	>95:<5
2	1c	А	2c-syn	75	98:2	< 5 : > 95
3	1d	В	2d-anti	91	98:2	>98:<2
4	1e	В	2e-syn	98	93:7	$<\!2\!:>\!98$
5	1f	В	2f-anti	99	92:8	98:2


^a Method A: 0.2 equiv. of CuCN was used. Method B: 2 equiv. of CuCN was used. The reaction was performed at -23 °C unless otherwise noted.
^b Combined isolated yield. ^c Determined by ¹H NMR spectroscopy.
^d Determined by ¹³C NMR spectroscopy.

10.1039/b205957f

ö


configuration was difficult, the products were converted into the corresponding δ -lactones (vide infra).

With a view to examining the stereospecificity of the transformation, two pairs of trans- and cis-epoxides were subjected to the methylation reaction (entries 1-4). As was expected, trans-epoxides 1b and 1d afforded the S_N2'-antiproducts, while the corresponding syn-isomers were obtained from cis-epoxides 1c and 1e with high regioselectivity. The substrates (1d, 1e, 1f) bearing an oxygen functional group on the side chain also gave satisfactory results, though use of a stoichiometric amount of CuCN was required in these cases.6 Epoxide 1g having a *cis*-olefin moiety also underwent a stereoselective $S_N 2'$ -methylation reaction to give 2g-syn in excellent yield and stereoselectivity (Scheme 3).

Scheme 3 The reaction of an epoxy-cis-unsaturated ester.

Hydrogenation of the products followed by lactonization mediated by Ti(OPri)₄ effected conversion into the corresponding δ -lactones as shown in Scheme 4. It is noteworthy that stereoselective synthesis of this type of 2,5-disubstituted δ lactone is not easy, *e.g.*, methylation of a 5-substituted δ -lactone by treatment with LDA followed by MeI led to a 1:1 mixture of diastereomers.

Scheme 4 Transformation of the α -methylated product to a δ -lactone.

In conclusion, a highly regio- and stereoselective α methylation reaction of γ , δ -epoxy- α , β -unsaturated esters has been developed by using the Me₂Zn-CuCN reagent. It is noteworthy that the substrates in optically active form can be easily prepared from the corresponding dienoates by Shi's asymmetric epoxidation reaction.⁷ Since the S_N2'-products are readily converted into the corresponding δ -lactones, the present method should be useful for asymmetric total synthesis of natural products having a substituted δ -lactone or a tetrahydropyran moiety.

Notes and references

- 1 B. M. Kim, S. F. Williams and S. Masamune, in Comprehensive Organic Synthesis, Additions to C-X n-Bonds Part 2, ed. C. H. Heathcock, Pergamon Press, Oxford, 1991, vol. 2. ch. 1.7.
- 2 M. Miyashita, M. Hoshino and A. Yoshikoshi, J. Org. Chem., 1991, 56, 6483; M. Miyazawa, N. Ishibashi, S. Oonuma and M. Miyashita, Tetrahedron Lett., 1997, 38, 3419; N. Ishibashi, M. Miyazawa and M. Miyashita, Tetrahedron Lett., 1998, 39, 3775.
- 3 T. Ibuka, M. Tanaka, H. Nemoto and Y. Yamamoto, Tetrahedron, 1989, 45. 435.
- 4 T. Ibuka, T. Nakao, S. Nishii and Y. Yamamoto, J. Am. Chem. Soc., 1986, 108, 7420 and references therein.
- 5 Organozinc reagents have been used to achieve a highly stereoselective S_N2' reaction with allyl halides: E. Nakamura, K. Sekiya, M. Arai and S. Aoki, J. Am. Chem. Soc., 1989, 111, 3091.
- 6 Typical procedure for the present reaction with a stoichiometric amount of CuCN: to a mixture of methyl 4,5-epoxy-2-hexenoate (1.0 g, 7.0 mmol), CuCN (1.3 g, 14.1 mmol) and DMF (18 mL) was added Me₂Zn (2.0 M solution in toluene: 7.0 mL, 14.1 mmol) at -23 °C on which the color turned from pale green to yellow. The reaction mixture was stirred for 1 h, quenched by water and stirred for an additional 1 h. After filtration through a pad of Celite, the filtrate was extracted with ether. The combined organic layers were dried over Na2SO4 and concentrated in vacuo. Purification by silica gel chromatography (hexane-ether; 1:1) afforded the α -methylated product (α : $\gamma = 90:10$) as a pale yellow oil (0.95 g, 86% yield). The reaction with a catalytic amount of CuCN was also performed in a similar manner as noted above
- 7 M. Frohn, M. Dalkiewicz, Y. Tu, Z.-X. Wang and Y. Shi, J. Org. Chem., 1998, 63, 2948.