Unprecedented zwitterion in quinonoid chemistry \dagger

Olivier Siri and Pierre Braunstein*
Laboratoire de Chimie de Coordination, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal F-67070. Strasbourg Cédex, France. E-mail: braunst@chimie.u-strasbg.fr

Received (in Cambridge, UK) 30th August 2001, Accepted 16th November 2001
First published as an Advance Article on the web 7th January 2002

The first 12π-electron zwitterionic structure in quinonoid chemistry is described with the N, N, O, O-molecule 6 in which the positive charge is π-delocalized between the nitrogen atoms and the negative charge between the oxygen atoms; depending on the crystallization solvent, a 1D-tapelike H -bonded network can be generated in the solid-state.

Organic molecules with a quinonoid structure constitute a large and important class of compounds with remarkable chemical and physical properties. ${ }^{1}$ For years, studies on structure/colour relationships have typically involved N-substituted aminoquinones ${ }^{2}$ whose synthesis generally requires N-substitution of the amine before nucleophilic attack at the quinonoid system. In view of the intrinsic interest in these molecules and related benzoquinoneimines, ${ }^{3}$ and their potential as ligands in coordination and organometallic chemistry, a more versatile access than that currently available appears attractive. Herein, we describe (i) the first 12π-electron zwitterionic molecule (6) in quinonoid chemistry which results from the unexpected one-pot synthesis of the aromatic N, N, O, O-system 4 from 1,2,4,5-tetraaminobenzene $\mathbf{1}$ and (ii) the supramolecular H-bonded network based on the 'tête-bêche' arrangement of these zwitterions in the solid state.
Although compound $\mathbf{1}$ is known to be readily oxidized in $\mathbf{2},{ }^{4}$ smooth reaction of $1 \cdot 4 \mathrm{HCl}$ with $\mathrm{RC}(\mathrm{O}) \mathrm{Cl}(\mathrm{R}=t-\mathrm{Bu})$ in wet $\mathrm{CH}_{3} \mathrm{CN}$ and excess NEt_{3} did not afford the p-benzoquinone derivative 3. Instead, the new compound 4 was obtained (25% yield) together with known 5 (72% yield) which results from direct N-substitution of $\mathbf{1}^{5}$ (Scheme 1).

Scheme 1 (i): t - $\mathrm{BuC}(\mathrm{O}) \mathrm{Cl}\left(4\right.$ equiv.)/ $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$; (ii): $\mathrm{LiAlH}_{4} / \mathrm{THF} /[\mathrm{Ar}]$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extraction/[Air].
\dagger Electronic supplementary information (ESI) available: spectroscopic data for 4 and 6 and an ORTEP view of the structure of 4.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{4}$ (see ESI) \dagger were consistent with the presence in solution of either a mirror plane or an inversion center, symmetry elements compatible with isomeric structures in which the two oxygen functions would be in mutual meta or para position, respectively. An X-ray diffraction study established the mutual meta relationship between the N and O-substituents, ${ }^{6}$ and the down, up, up,up-type orientation of the carbonyl functions which implies a lower symmetry than in solution. We are currently investigating the reaction pathways leading to 4.
Reduction of 4 with LiAlH_{4}, followed by work-up in air, afforded $\mathbf{6}$ as a purple solid in 70% yield. An X-ray diffraction study on single crystals of $\mathbf{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, obtained from acetone $/ \mathrm{H}_{2} \mathrm{O}$, showed a planar molecule, except for the t-Bu groups which are both on the same side of the plane (Fig. 1). ${ }^{6}$ The $\mathrm{C}(2)-\mathrm{C}(3)$ distance of $1.517(5) \AA$ corresponds to a single bond and indicates the lack of conjugation between the two halves of the ligand. In contrast, the other $\mathrm{C}-\mathrm{C}$ distances within the ring, the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}(3)-\mathrm{N}(1)$ and $\mathrm{C}(5)-\mathrm{N}(2)$ bond distances show a remarkable bond equalization. Delocalization of the $12 \pi-$ electron system appears therefore confined within two independent subunits of the molecule: the negative charge being delocalized between the oxygen atoms and the positive charge between the nitrogen atoms. Formation of 6 could be explained by reduction of the amido and ester groups of 4 leading to an intermediate A (not isolated but related to known molecules ${ }^{7}$) which would be readily oxidized by air during work-up to give B (Scheme 1). Proton migration from oxygen onto the more basic nitrogen atoms then results in the zwitterionic benzoqui-

Fig. 1 Top (A) and side (B) views of the structure of $\mathbf{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the crystal. Thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: C1-C2 1.379(5), C1-C6 1.399(5), C2-O1 1.265(4), C2-C3 1.516(5), C3-C4 1.393(5), C3-N1 1.323(5), C4-C5 $1.389(5), \mathrm{C} 5-\mathrm{C} 61.523(5), \mathrm{C} 5-\mathrm{N} 21.320(5), \mathrm{C} 6-\mathrm{O} 2$ 1.254(4); C2-C1-C6 122.0(4), C1-C2-C3 118.7(3), C3-C2-O1 115.5(4), C5-C6-O2 116.2(3), C2-C3-N1 113.4(3), C6-C5-N2 113.5(3).
nonemonoimine structure 6. In contrast to the UV-VIS. absorption spectrum of substituted benzenes like $\mathbf{4}$ and $\mathbf{5}$, that of 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is characterized by two strong absorptions at 350 $\mathrm{nm}(\log \varepsilon=4.49)$ and $343 \mathrm{~nm}(\log \varepsilon=4.45)$ which correspond to the intraquinone charge transfers. ${ }^{8}$ The situation in 6 represents a novel electronic pattern for N, N, O, O-systems since previously known quadrupol-merocyanine-type structures 7 and $\mathbf{8}$ display electronic delocalization exclusively between nitrogen and oxygen atoms with no occurrence of a zwitterionic structure. ${ }^{2}$

In the latter cases, theoretical studies have been performed in relation to the coupling effects which occur in polymethine dyes. ${ }^{9}$ The molecular symmetry deduced from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (see ESI \dagger) is clearly explained by the zwitterionic structure of $6 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and not by a tautomeric equilibrium as suggested in related systems. ${ }^{3,10}$ In the solid state, intermolecular interactions develop between water molecules of solvation and $\mathrm{O}(1), \mathrm{O}(2)$ and the $\mathrm{N}(2) \mathrm{H}$ proton. In contrast, crystals of $\mathbf{6}$ grown from an aprotic solvent such as chlorobenzene showed a 'tête-bêche' arrangement of the zwitterion, ${ }^{6}$ leading to an H -bonded tape-like supramolecular array (Fig. 2). The six-membered rings of two consecutive molecules are almost orthogonal to each other. A change in the orientation of the t-Bu groups is observed, which are now situated on opposite sides with respect to the molecular plane. Bond distances in 6 are very similar to those in $\mathbf{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Fig. 2 Views of the supramolecular array generated by 6 in the solid-state: (A) view of the tape running in the projection plane; (B) side view with the tape orthogonal to the projection plane. Colour coding : oxygen, red; nitrogen, blue; hydrogen, green.

The synthesis of the unprecedented zwitterion 6 results from a new strategy for the preparation of substituted aminobenzoquinones. This molecule displays a remarkable delocalization of its 12π-electron system and represents a promising building block in coordination and supramolecular chemistry. ${ }^{11}$

This work was supported by the CNRS and the Ministère de la Recherche (Paris). Thanks are due to Ms N. Kyritsakis, Dr A. DeCian and Prof. R. Welter for the X-ray structure determinations.

Notes and references

1 (a) S. Pataï and Z. Rappoport, The Chemistry of the quinonoid compounds, Wiley and Sons, New York, 1988, vol. 1 and 2; (b) H. Bock, K. Ruppert, C. Näther and Z. Havlas, Angew. Chem., Int. Ed. Engl., 1991, 30, 1180.
2 (a) H. J. Kallmayer and C. Tappe, Arch. Pharm., 1986, 319, 421; (b) C. R. Tindale, Aust. J. Chem., 1984, 37, 611; (c) S. Dähne, D. Leupold and R. Radeglia, J. Prakt. Chem., 1972, 314, 525.

3 Y. Lee and L. M Sayre, J. Am. Chem. Soc., 1995, 117, 3096; M. K. Manthey, S. G. Pyne and R. J. W. Truscott, Aust. J. Chem., 1989, 42, 365.

4 (a) R. Nietzki and E. Hagenbach, Ber.Dtsch. Chem. Ges., 1887, 20, 328; (b) R. Nietzki, Ber. Dtsch. Chem. Ges., 1887, 20, 2114.

5 O. Siri and P. Braunstein, Chem. Commun., 2000, 2223.
6 Crystal datafor 4 : $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}, M=476.62$, triclinic, space group $P \overline{1}$; $a=10.3719(6), b=11.2034(6), c=13.8449(8) \AA, \alpha=103.748(5)$, $\beta=103.919(5)^{\circ}, \gamma=112.113(5)^{\circ}, V=1346.9(4) \AA^{3}, Z=2, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=0.083 \mathrm{~mm}^{-1}, T=294 \mathrm{~K}, 2192$ data with $I>3 \sigma(I)$, final $R=$ $0.068, R_{\mathrm{w}}=0.081, \mathrm{GOF}=1.180 . \mathrm{CCDC}$ reference number 149251. An ORTEP plot is provided in the ESI. \dagger Crystal data for $\mathbf{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}, M=314.43$, monoclinic, space group $C 2 / c ; a=$ 24.998(2), $b=16.728(1), c=8.8553(6) \AA, \beta=102.112(5)^{\circ}, V=$ $3620.6(4) \AA^{3}, Z=8, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.082 \mathrm{~mm}^{-1}, T=173 \mathrm{~K}, 1571$ data with $I>3 \sigma(I)$, final $R=0.056, R_{\mathrm{w}}=0.080, \mathrm{GOF}=1.311$. The two $\mathrm{N}-H$ atoms were located experimentally. CCDC reference number 149253. Crystal data for 6: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}, M=278.40$, monoclinic, space group $P 2_{1} / c ; a=12.9221(7), b=19.696(1), c=13.3065(8) \AA$, $\beta=101.231(5)^{\circ}, V=3321.9(7) \AA^{3}, Z=8, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.073 \mathrm{~mm}^{-1}$, $T=294 \mathrm{~K}, 1891$ data with $I>3 \sigma(I)$, final $R=0.039, R_{\mathrm{w}}=0.041$, GOF $=1.035$. The H atoms were placed in calculated positions. CCDC reference number 149252. All structures were refined using SHELXL97 with F^{2} data sets. See http://www.rsc.org/suppdata/cc/b1/b107828n/ for crystallographic data in CIF or other electronic format.
7 (a) G. Heller and A. Sourlis, Chem. Ber., 1910, 43, 2581; (b) V. P. Evstafev, G. I. Braz and A. Y. Yakubovich, Chem. Heterocycl. Compd., 1970, 6, 682; (c) O. Kym, Chem. Ber., 1911, 44, 2919; (d) B. Loev, H. Jones, R. E. Brown, F. Huang, A. Khandawala, M. J. Leibowitz and P. Sonnino-Goldman, J. Med. Chem., 1985, 28, 24.
8 K. Hutchison, G. Srdanov, R. Hicks, H. Yu and F. Wudl, J. Am. Chem. Soc., 1998, 120, 2989.
9 (a) S. Dähne and D. Leupold, Angew. Chem., 1966, 78, 1029; (b) J. Fabian and G. Tröger-Naake, J. Prakt. Chem., 1976, 318, 801; (c) J. Fabian, J. Prakt. Chem., 1978, 320, 361.
10 A. Bonnet, G. Barre and P. Gilard, J. Chim. Phys., 1995, 92, 1823.
11 J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.

