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The Diels–Alder reaction of spirolactones with cyclopenta-
diene afforded the adduct with high p-facial selectivity; a
hydrophilic analogue of scyphostatin was synthesized from
the Diels–Alder adduct.

Scyphostatin 1 (Fig. 1) was isolated from the mycelial extract of
Dasyscyphus mollissima by Ogita and coworkers (Sankyo Co
Ltd., Japan) in 1997 and was found to be a potent inhibitor of
neutral sphingomyerinase (N-SMase).1 Scyphostatin 1 consists
of a hydrophobic side chain and a hydrophilic 4,5-epoxy-
2-cyclohexen-1-one moiety. Our interest in such biphilic natural
products2 has inspired us to carry out synthetic studies on
scyphostatin 1. Other groups have also reported synthetic
efforts.3 In this paper, the efficient synthesis of hydrophilic
analogue 2 via a Diels–Alder reaction with high p-facial
selectivity is described.

Masked benzoquinones, obtained by the Diels–Alder reac-
tion of cyclopentadiene and p-benzoquinones, have proven
useful as precursors to highly functionalized cyclohexane
derivatives.4 Especially notewortly is the high p-facial selectiv-
ity in the Diels–Alder reaction of spirolactone 3 with sterically
hindered chiral bicyclic cyclopentadiene derivatives reported
by Winterfeldt et al.5 Thus, we decided to look into the
possibility using of this strategy by reacting spirolactone with
sterically undemanding cyclopentadienes for the preparation of
the hydrophilic moiety as outlined in Scheme 1.

The spirolactone 3 was synthesized by oxidative intra-
molecular lactonization with PhI(OAc)2.6 The Diels–Alder
reaction of spirolactone 3 with cyclopentadiene in CH2Cl2 and
CF3CH2OH preferentially afforded the adduct 4 (4+5 = 96+4,

Scheme 2). The Diels–Alder reaction of spirolactone 3 was
accelerated in CF3CH2OH. When CH3CN was used as a
solvent, the p-facial selectivity of spirolactone 3 with cyclo-
pentadiene slightly decreased (4+5 = 91+9). The mixtures of
the adducts could be separated by HPLC. The stereochemistry
of the adducts 4 and 5 was assigned by 1H NMR NOE
experiments (Fig. 2).7 Thus, we have found that even if the
diene is sterically undemanding, the Diels–Alder reaction of
spirolactone 3 proceeds with high p-facial selectivity.

The high p-facial selectivity in Diels–Alder reaction of
spirolactone 3 with cyclopentadiene prompted us to use it for
the synthesis of 2, a model compound for the hydrophilic
moiety of scyphostatin 1 (Scheme 3). Epoxide 6 was obtained
by epoxidation with H2O2/LiOH, followed by reclosure to the
lactone ring with 1-(3-dimethylaminopropyl)-3-ethylcarbodii-
mide (WSCI) (66% over two steps). The epoxide ring of 6 was
reductively cleavaged with SmI2 (89%) to give 7 as the only
ring opened product.8 Protection of the secondary alcohol with

Fig. 1

Scheme 1

Scheme 2

Fig. 2 Determination of the relative stereochemistry of adducts 4 and 5.

Scheme 3 Reagents and conditions: (a) 30% H2O2, LiOH, THF, 0 °C, then
WSCI, CH2Cl2, 25 °C, 66% over two steps; (b) SmI2, MeOH, THF, 278 °C,
89%; (c) TESCl, imidazole, CH2Cl2, 25 °C, 100%; (d) maleic anhydride,
Ph2O, 230 °C, 96%.
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triethyl silyl group (TES) gave 8 (100%). Retro-Diels–Alder
product 9 was obtained by heating (230 °C) 8 in the presence of
maleic anhydride (96%).

With 5-hydroxy-2-cyclohexen-1-one bearing a spirolactone 9
in hand, we focused our attention on its conversion to
4,5-epoxy-2-cyclohexen-1-one (Scheme 4). Treatment of 9
with NaBH4/CeCl3 gave alcohol 10 as a single isomer (99%).
The relative stereochemistry was assigned by coupling con-
stants (JH1–H2ax, JH2ax–H3) and NOE experiments in 1H NMR
(Fig. 3). Contrary to our expectations, epoxide 11 was obtained
as a singal isomer upon epoxidation of 10 with 3-chloroperox-
ybenzoic acid (mCPBA) (95%).9 The relative stereochemistry
was determined by 1H NMR NOE experiments and coupling
constants (Fig. 3). NOE enhancement between H5 and H7 was
observed. The observed facial selectivity in the epoxidation
reaction can be attributed to attack on the face opposite to the
lactone CH2 group to avoid repulsion, despite the presence of a
hydroxy directing group (Fig. 4). Epoxide 11 was converted to
epoxide 13 by tosylation, followed by removal of the TES group
with TBAF (59% over two steps). When epoxide 13 was treated
under Swern oxidation conditions, 4,5-epoxy-2-cyclohexen-
1-one, bearing a spirolactone 2, a hydrophilic analogue of
scyphostatin 1, was obtained with simultaneous extrusion of the
TsO group (75%).10

In summary, we have developed a short and high efficient
method of synthesizing of 4,5-epoxy-2-cyclohexen-1-one de-
rivative 2, a hydrophilic analogue of scyphostatin 1. The
method features a highly selective Diels–Alder reaction,
reductive oxirane ring opening, 1,2-enone reduction, and

subsequent epoxidation. Investigations towards the total synthe-
sis of scyphostatin 1 based on this convenient strategy is now in
progress.
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Fig. 3 Determination of the relative stereochemistry of 10 and 11.

Fig. 4 Stereoselectivity in epoxidation of 10 with mCPBA.

2097CHEM. COMMUN. , 2002, 2096–2097


