www.rsc.org/chemcomm

Chem Comm

Reductive decomplexation of π -allyltricarbonyliron lactone complexes; a new route to stereo-defined 1,7-diols and 2,3-diene-1,7-diols†

Christopher J. Hollowood and Steven V. Ley*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW. E-mail: svl1000@cam.ac.uk; Fax: +44 (01223) 336442; Tel: +44 (0)1223 336398

Received (in Cambridge, UK) 2nd July 2002, Accepted 8th August 2002 First published as an Advance Article on the web 22nd August 2002

Treatment of π -allyltricarbonyliron lactone complexes bearing an adjacent leaving group, with lithium naphthalenide causes decomplexation to acyclic dienols in excellent yield and without any scrambling of the allylic centre.

The availability of a range of methods for removal of the ligating iron moiety in a predictable manner¹ is crucial to the use of π -allyltricarbonyliron lactone complexes in synthesis. To date four methods have been reported for decomplexation: barium hydroxide mediated decarboxylation² followed by oxidative release of the organic ligand to afford dienes; exhaustive carbonylation to furnish δ -lactones;² single electron oxidation to give β -lactones³ and borohydride reagents to yield enediols.⁴ By understanding the behaviour of these complexes in differing chemical and physical environments, a more detailed picture of the bonding within the complexes emerges which allows for better planning of new synthetic transformations. The advent of highly selective hydride, alkyl and alkynyl additions to ketones adjacent to the η^3 unit $\!\!\!^5$ and Mukaiyama aldol reactions of appended silvl enol ethers⁶ gives access to functionalised polyol fragments at the periphery of the organic ligand. Here we report a new decomplexation method that leads to a new range of products.

Initial studies focused on the iron lactone complex 1a.⁴ After screening a number of reagents it was found that treatment with lithium dimethylcuprate caused the stereo-controlled removal of the iron. Reaction of complex 1a with the dimethyl copper lithium at -78 °C in THF for 12 h followed by warming to room temperature afforded a mixture of dienes which had formed via elimination of the appended alcohol. Hydrogenation of the mixture afforded a single symmetrical molecule undecan-6-ol 2 and thereby also confirmed the regiochemistry of the reaction (Scheme 1).

Consideration of a possible mechanism for this cuprate decomplexation reaction led to the idea that the cuprate was acting as a single electron reductant and that the iron by-product was most likely to be dilithium tetracarbonylferrate $[Li_2Fe(CO)_4]$, the analogous sodium salt being well known in the literature.7 Four electron equivalents would be required if this process was operating which is also what was observed. Optimisation of this route focused on two main considerations. First, a better leaving group than an appended hydroxyl group

Scheme 1 Reagents and conditions: for 1a: (i) LiCuMe₂, THF -78 °C to rt; (ii) H₂, Pd/C, EtOAc, 78%. For **1b**: (i) lithium naphthalenide, THF -78 °C to rt; (ii) H2, Pd/C, EtOAc, 92%.

† Electronic supplementary information (ESI) available: experimental procedures. See http://www.rsc.org/suppdata/cc/b2/b206406p/

would be sensible. Secondly the copper species may be bonding to the hydroxyl aiding its ability to leave and/or affecting its oxidative lability and therefore the other modification was to employ a strong single electron reductant such as lithium naphthalenide. As iron complexes bearing acetates could be prepared in high yield they were examined first. Treatment of lactone complex **1b** with lithium naphthalenide in THF at -78°C for 12 h followed by warming to room temperature and subsequent hydrogenation of the product(s) once again gave the undecan-6-ol 3 but in a much improved yield (92%) (Scheme 1).

A range of substrates were then prepared and treated with lithium naphthalenide, using methods previously developed by our group.⁵ The chosen substitution patterns would produce a diverse range of diols (Table 1).

Once all these substrates were in hand, they were subjected to the newly developed decomplexation conditions and the diene mixtures that were produced were reduced to afford alkanediols (Table 1). Where the leaving group was an acetate 5a-6b the reaction proceeded smoothly and in excellent yield 13a-16b. It was also possible to use an alternative procedure for the diacetate precursors **5a,b**. Use of excess lithium naphthalenide followed by methanol work-up cleaved the remaining acetate and furnished unprotected diols in good yield 13a,b. When a mesylate was used in place of an acetate group 7 the reaction yielded no isolable product on a 0.15 mmol scale. The cyclic carbonate 9a underwent the same elimination with the loss of CO_2 to give an unprotected 1,7-alkanediol **13b**.

From analysis of the ¹H 600 MHz NMR spectra of the isolated mixtures of dienes from decomplexations carried out with lithium naphthalenide, three components were identified. Examination of the coupling constants indicated that these three components were (2E, 4E), (2Z, 4E), (2E, 4Z) in all cases where the allylic alcohol is 1-C (Fig. 1). These mixtures represented almost total mass recovery (92-98% yield) and therefore their NMR spectra could be viewed as reasonably accurate representations of the selectivity of the reactions. In total six examples were studied. In the case of endo complexes with acetate leaving groups 5b-6a,8a the main component was found to be (2E, 4E)-10a-d with approximately equal amounts of (2Z,4E)-11a-d and (2E,4Z)-12a-d. For cyclic carbonates, no (2E,4Z)-12e isomer was observed and the yield of the other two components 10e,11e increased. When an exo iron lactone complex 6b was employed the major product switched from (2E,4E)-10c to (2Z,4E)-11c. Three components were still present with the minor two being the same geometry as previously observed.

In summary an extremely high yielding single electron decomplexation technique for π -allyltricarbonyliron lactone

Fig. 1 Diene geometries recorded after demetallation.

Init	ial alcohol ^a	Procedure	Der	ivatised alcohol	Yield (%)	Decomplexation procedure	Diene geometry ^{bc} (E,E):(Z:E):(E,Z)		Decomplexed product	Yield ^d (%)
3a	OFFe(CO)3 OFFE(CO)3 OFFE(C	a	5a	Fe(CO) ₃ 	96	f		1 3 a	CgH11 OH CgH11	81
3b	Fe(CO) ₃ OV-I C ₆ H ₁₁ OH OH	a	5b		93	f		13b	CgH11 OH	83
			5b	Fe(CO) ₃ C ₆ H ₁₁ OAc OAc		g	0.70:0.17:0.13 10a 11a 12a	14a	CeHt1	93
3c	Fe(CO)3 CgH11 OH OH OH	a	5c	Fe(CO) ₃ C ₃ H ₁₁ C ₄ H ₁₁ C ₄ C ₄	91	g	0.53:0.19:0.28 10b 11b 12b	14b	CgH ₁₁ OAC	91
4a	TESO OTES	a	6a	TBSO-COD3 OAC OTBS	97	g	0.62:0.15:0.23 10c 11c 12c	15	TBSO OH	96
4b	HO TBSO TBSO	a	6b	ACO (OC) ₃ Fe	95	g	0.26:0.67:0.07 10c 11c 12c	15	TESO OH	96
3b	Pre(CO) ₃ OH C ₅ H ₁₁ OH OH	b	7	Fe(CO) ₃ C ₅ H ₁₁ OTBS	66 ^a	g			No isolable product	
3b	Pe(CO) ₃ OH C ₅ H ₁₁ OH	с	8a	C ₅ H ₁₁ C ₅ H	75 ^a	g	0.62:0.20:0.18 10d 11d 12d	16a	C ₆ H ₁₁ OTBS	95
3a	OFFe(CO)3 OFFe(CO)3 OF C ₆ H ₁₁ OH OH C ₆ H ₁₁	d	8b	Fe(CO) ₃	76	g		16b	OH OTBS CeH11 CeH11	89
3b	OH C ₆ H ₁₁ OH OH	е	9a	Fe(CO) ₃ C ₃ H ₁₁	72	g	0.74:0.26:0.00 10e 11e 12e	13b	C ₆ H ₁₁ OH OH	96

Table 1 Reagents and conditions: (a) Ac_2O , DMAP, NEt_3 , CH_2Cl_2 , 0 °C; (b) (i) TBSOTf, NEt_3 , CH_2Cl_2 , 0 °C; (ii) MsCl, NEt_3 , CH_2Cl_2 , 0 °C; (c) (i) TBSOTf, NEt_3 , CH_2Cl_2 , 0 °C; (ii) Ac_2O, DMAP, NEt_3, CH_2Cl_2 , 0 °C; (d) TBSOTf, NEt_3 , CH_2Cl_2 , 0 °C; (ii) Ac_2O, DMAP, NEt_3, CH_2Cl_2 , 0 °C; (d) TBSOTf, NEt_3 , CH_2Cl_2 , 0 °C; (ii) Ac_2O, DMAP, NEt_3, CH_2Cl_2 , 0 °C; (d) TBSOTf, NEt_3 , CH_2Cl_2 , 0 °C; (ii) MsCl, NEt_3 , CH_2Cl_2 , 0 °C; (ii) Ac_2O, DMAP, NEt_3, CH_2Cl_2 , 0 °C; (ii) Ac_2O, DMAP, CH_2Cl_2; (f) (i) Li naphthalenide (10 equiv.), THF, -78 °C to rt, MeOH; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (i) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (ii) H_2, Pd/C, EtOAc; (g) (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (h) Li naphthalenide (5 equiv.), THF, -78 °C to rt; (h) Li naphthalenide (5 equiv.), THF, -78

a Isolated yield for two steps. b Where recorded. c As determined by the 1H 600 MHz NMR spectra. d Isolated yield for two steps.

complexes has been developed to afford stereodefined 1,7-alkanediols after hydrogenation. It generates predictable diene geometry with good selectivity, in that *endo* complexes give (E,E)-dienes while *exo* complexes produce (Z,E)-dienes.

Notes and references

- 1 For a review of these complexes see S. V. Ley, L. R. Cox and G. Meek, *Chem. Rev.*, 1996, **96**, 423.
- 2 R. Aumann, H. Ring, C. Krüger and R. Goddard, Chem. Ber., 1979, 3644.
- 3 G. D. Annis and S. V. Ley, J. Chem. Soc., Chem. Commun., 1977, 581; G. D. Annis, S. V. Ley, C. R. Self and R. Sivaramakrishnan, J. Chem. Soc., Perkin Trans. 1, 1981, 270.

- 4 S. V. Ley, S. Burckhardt, L. R. Cox and J. M. Worrall, J. Chem. Soc., Perkin Trans. 1, 2000, 211.
- S. V. Ley, G. Meek, K. H. Metten and C. Pique, J. Chem. Soc. C, 1994, 1931; S. V. Ley and G. Meek, Chem. Commun., 1996, 317; S. V. Ley, L. R. Cox, G. Meek, K. H. Metten, C. Pique and J. M. Worrall, J. Chem. Soc., Perkin Trans. 1, 1997, 3299; S. V. Ley and L. R. Cox, J. Chem. Soc., Perkin Trans. 1, 1997, 3315; S. V. Ley, S. Burckhardt, L. R. Cox and G. Meek, J. Chem. Soc., Perkin Trans. 1, 1997, 3327.
- 6 S. V. Ley, L. R. Cox, B. Middleton and J. M. Worrall, *Chem. Commun.*, 1998, 1339; S. V. Ley and L. R. Cox, *Chem. Commun.*, 1998, 227; S. V. Ley, L. R. Cox, B. Middleton and J. M. Worrall, *Tetrahedron*, 1999, 55, 3515; S. V. Ley and E. A. Wright, *J. Chem. Soc.*, *Perkin Trans.* 1, 2000, 1677.
- 7 R. D. Pike and L. A. Paquette, *Encyclopedia of reagents for organic synthesis*, ed. L. A. Paquette, Wiley, New York, 1995.