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For the first time in natural O-glycosides, a large amount of
non-exo-anomeric conformation is experimentally detected,
in solution

It is usually assumed that the exo-anomeric effect is a major
factor governing the conformational behavior of natural
oligosaccharides.’2 Conformational flexibility in these mole-
cules mainly concerns the aglyconic v (c1-o1-cx-Hx) angle since
@ (H1-c1-o1-cx) IS restricted by this stereoelectronic effect.34 In
fact, to the best of our knowledge there is no reported case of a
natural glycoside adopting anon-exo-anomeric conformationin
solution. In addition, regarding flexibility, within natural
sugars, branched type oligosaccharidesincluding sugar residues
glycosidated at contiguous positions (as blood type carbohy-
drate antigens i.e,, Lewis X) have been considered as the
paradigm of rigid saccharides, the rigidity enhanced by van der
Waals interactions.5-¢ Herein, we unambiguously demonstrate
that both common beliefs are not general. In neomycin-B (Fig.
1), a branched oligosaccharide antibiotic, for the first time in
natural sugars, alarge amount of non-exo-anomeric conforma-
tion is experimentally detected, in solution. Moreover, this
unusual behavior is related to the existence of branching. Here,
polar contacts between non-vicinal sugar units leads to an
enhanced flexibility of the ribose glycosidic torsion ¢.

As a first step, in our structural analysis of neomycin-B,
selective 1D-NOE experiments were carried out at 313 K (pH
4.7). The branched nature of neomycin-B allowed the measure-
ment of an unusually large number of structuraly relevant
NOEs (Fig. 1). In addition 3J values were measured for the
ribose ring. The analysis of the couplings for the idose ring
unambiguously show that the 1C,4 (L) conformer (with three
axial and two equatorial substituents) is by far the magjor onein
water (>98%). This observation is biologically relevant: the
reported X-ray conformation for this ring in the ribosome-
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Fig. 1 (a) Structure of neomycin-B along with the numbering employed for
the different sugar units. (b) Schematic representation of the measured
NOEsat pH 4.7 and 313 K. Oxygen and nitrogen atomsare shown in red and
blue respectively. Only those protonsinvolved in relevant NOE contacts are
shown (in black).

T Electronic supplementary information (ESI) available: experimental and
theoretical parameters; Figs. S1-7. See http://www.rsc.org/suppdata/cc/b2/
b205566/
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bound state of paromomycin (an antibiotic of the neomycin-B
family with 2-amino-2-deoxy-p-glucose instead of 2,6-dia-
mino-2,6-dideoxy-p-glucose) is the opposite 4C; (L), with two
axial and three equatoria substituents.”

In order to get an experimentally derived ensemble, 80 ns
MD-tar8 (molecular dynamics simulations with time-averaged
restraints) simulations were carried out by including 5 Js (Table
1) and 14 experimental distances astime-average restraintswith
AMBER 5.0. The obtained distribution (in vacuo, € = 80) of
conformers for every particular glycosidic linkage is shown in
Fig. 2, superimposed on the steric MM3* maps. It can be
observed that for the 2,6-diamino-2,6-dideoxy-p-Glc «-
(1—4)-2-deoxy-Strpt linkage (Fig. 1, rings | and 1) a mgjor
population is centered around ¢/ = —60°/—40°. A very minor
population around ¢/¥ = —25°/40° was aso detected. In
contrast, the 2,6-dideoxy-2,6-diamino-L-1do (1—3)-Rib link-
age (rings Il and 1V) is characterized by a high degree of
flexibility with two different conformations, almost equally
populated, located at ¢/ ¥ = —55°/—50° and ¢/ ¥ = —55°/40°.
Nevertheless, both glycosidic linkages exhibit common fea
tures: ¢ values are scattered around the exo-anomeric region and
conformational flexibility is mainly restricted to the aglyconic

Table 1 NOE derived distances and coupling constant values measured for
neomycin B at 313 K and pH 4.7. Average distances obtained (from left to
right) from unrestrained MD simulations, from MD-tar runs including only
coupling constants, and from MD-tar simulations using J and distances are
shown for comparison

ad(A) Exp MD MD-tar J MD-tar
Hlgc-Hagmp 25 2.7 2.8 2.6
H1lgc-HS«rp 3.0 3.0 2.9 31
Hlgc-H3arp — 4.4 4.3 4.3
H1lgcH5ip 3.0 3.2 4.5 31
HlgHlip 39 39 4.0 3.7
HlgcH2p 3.6 3.1 31 34
HlgcH3ip >35 3.6 3.2 31
leib'Hssrp 23 25 2.6 25
Hlip-Hasp >4.0 4.5 >4.0 4.4
leib'HGSIrp 3.6 33 32 33
Hzrib'Hesrp 33 33 33 34
Hliip-Hrip 32 31 31 31
H1igo-H3iin 2.6 2.7 2.7 25
H1igo-H2ip 31 3.0 2.7 3.0
H1jgo-Hrin 3.9 4.1 43 37
J (Hz) Exp MD MD-tar J MD-tar
Hlip-H2:ip 2.7 4.3 3.2 3.2
H2:ip-H35ip 45 4.0 43 4.0
H3ib-Hdip 6.3 4.6 6.1 5.8
H4,ip- H5Rip 55 4.5 2.1 52
H4ip-H5Srp 3.2 3.2 2.8 38

aUnrestrained simulations and MD-tar runs including only J values were
carried out using explicit solvent, periodic boundary conditions, and Ewald
sums for the treatment of electrostatic interactions. Restrained MD-tar
simulationsincluding NOE and J information were performed in vacuo and
with € = 80.
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Fig. 2 (a) Experimentally derived MD-tar distributions obtained from a 80 nslength simulation for the Glc/Strp (left), Strp/Rib (middle) and Rib/Ido (right)
linkages. The presence of a very significant non-exo-anomeric population for the Strp/Rib linkage (middle) is highlighted in black. (b) Ribose puckering

distribution from MD-tar simulations.

y torsion. This constitutes the usual behavior for al natural O-
glycosides described so far. A totaly different behavior is
observed for the Rib 3(1—5)-2-deoxy-Strp linkage (rings 11 and
[11). In this case, two populations characterized by different ¢
values (60°/45° and —10°/35°) were detected. In contrast to
common behaviour, this linkage shows a larger degree of
mobility around ¢ than around . Moreover, MD-tar simula-
tionsindicate that a large percentage of the population (30%) is
located in non-exo-anomeric regions, with ¢ ca. —10°. The non-
exo-anomeric orientation of ¢ is experimentally detected by a
medium NOE H2gi,-H6sp, exclusive of this conformational
region, that is, the existence of a short H-2gi,/H-65y, average
distance can never be explained without assuming aremarkable
deviation from the exo-anomeric region for ¢rip (the H-2g;,/H-
Bsurp distance for the exo-anomeric region islonger than 4.1 A).
This NOE was detected under a variety of temperature
conditions for neomycin-B. Moreover, it is even stronger for
ribostamycin (the branched trisaccharide fragment of neomy-
cin-B).

It isimportant to bear in mind that despite therelatively large
number of experimental constraints employed (two or three
times the usual number in sugars), the system has still a certain
degree of underdetermination. Thisis a normal problem when
flexibility is considered in the interpretation of NMR data for
carbohydrates. Therefore, in principle, some dependency of the
conformational populations on the computational details would
be expected. However, this dependency can be assessed by
performing the MD simulations under a variety of different
conditions. For neomycin-B, MD simulations were carried out:
unrestrained, including only Jinformation, and including both J
and NOE data. In the three cases, trgjectories were aso
collected: without and with charges (with both e = 80 and € =
4*r). Finaly, unrestrained MD runs and those including only J
values as restraints were also performed with explicit solvent,
periodic boundary conditions, counter ions and Ewald sums for
the treatment of the el ectrostatic interactions. Average distances
and J vaues were calculated from al these trgectories and
compared with the experimental ones. For the unrestrained
caculations, and those including only J information, a qual-
itative agreement between the theoretical and experimental J
and NOE data (including the non-exo-anomeric H2gi,-Hbgp
distance) was obtained only when explicit solvent was em-
ployed. In contrast, MD-tar simulations including both NOE
and J information were found to quantitatively reproduce al the
data, independently of the simulation conditions. More im-
portant, in all cases the conformational behavior predicted for
neomycin-B wasvery similar. Although some differencesin the
obtained distributions for ¢, Were observed, al these calcula-
tions showed the existence of remarkable deviations from the
exo-anomeric region. The simulations carried out with explicit
solvent (either unrestrained or including only Js) predicted non-
exo-anomeric populationsfor ¢rip Very similar to those given by

the in vacuo tragjectories that included both NOEs and Js. This
effect has its origin in the existence of polar contacts between
the non-vicinal Glc and Rib moieties. In fact, solvated MD-tar
simulations carried out in identical conditions for the non-
branched 2,6-dideoxy-2,6-diamino-L-Ido p(1—3) Ribp(1—5)
2-deoxy-Strp fragment of neomycin-B (rings II, 111 and V)
conclusively show that the overall rigidity around ¢g;p, increases
and now &l torsion values are consistent with the exo-anomeric
effect.

Comparison of all these data clearly indicates that a 60—-70%
N (phase angle of 7°), 40-30% S (phase angle of 155°)
puckering distribution for the ribose ring, together with a
significant non-exo-anomeric (between 10° and —30°) popula-
tion for ¢rip (20-30%, depending on the conditions) are indeed
essential to satisfy the H2gi,-H6sp NOE. This conclusionisnot
based on the analysis of a single MD trgjectory, but on the
extensive comparison of the results obtained under different
simulation conditions. In this sense, the results are relatively
independent of the particular details of the calculations.

Some differences in the puckering distribution of the ribose
ring in neomycin-B can be observed in comparison to results
based on ab initio calculations on methyl -p-ribofuranoside
reported by Serianni et al.® Probably, the different pattern of
substitution of the furanose ring, solvation effects and non-
vicinal polar contacts between the glucose and ribose unit in
neomycin are at the origin of these differences.

Our resultsindicate that flexibility in natural O-glycosidesis
not exclusively restricted to the aglyconic wangle, but in certain
cases ¢ can aso undergo conformational fluctuations even
adopting non-exo-anomeric orientations. |n neomycin-B, rigidi-
fication of wgip angle is compensated by remarkable enhance-
ment of the internal mobility around @rip.

We thank BQU2000—C1501 and BQU2001-3693 for sup-
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Glc, Strp, Rib and 1do respectively.
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