C-Phosphanyl-C-chloroiminium salts as electrophilic carbene synthetic equivalents

Nathalie Merceron,^a Antoine Baceiredo,^a Heinz Gornitzka^a and Guy Bertrand*^{ab}

^a Laboratoire Hétérochimie Fondamentale et Appliquée du CNRS (UMR 5069), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04, France

^b UCR-CNRS Joint Research Chemistry Laboratory (UMR 2282) Department of Chemistry, University of California, Riverside, CA, 92521-0403, USA. E-mail: gbertran@mail.ucr.edu; Fax: (1)-9097872725

Received (in Cambridge, UK) 10th July 2002, Accepted 22nd August 2002 First published as an Advance Article on the web 9th September 2002

C-Phosphanyl-C-chloroiminium salts formally react as phosphonio(amino)carbenes with *tert*-butyl isocyanide and trimethylphosphine, and as R_2NC^+ with vinyl ether and diisopropylamine.

In the last fifteen years, several types of stable singlet carbenes have been isolated.¹ However, although both transient nucleophilic and electrophilic singlet carbenes are known,² all the stable carbenes prepared so far feature a strong nucleophilic character. We have recently shown that a single amino group was sufficient to stabilise a carbene moiety,³ and therefore we attempted the preparation of stable phosphonio-substituted aminocarbenes **2**, hoping that the electron withdrawing R_3P^+ group would confer electrophilic properties to the carbene centre.

Since α -haloalkylphosphines readily undergo spontaneous 1,2-(C \rightarrow P)-halotropic shifts,⁴ we chose to prepare *C*-phosphanyl-*C*-chloroiminium salts **1** as transient precursors to carbenes **2** (Scheme 1). It is known that *N*,*N*-disubstituted(chloromethylene)iminium salts react with the bis(diisopropylamino)-(trimethylstannyl)phosphine to afford *C*-phosphanyliminium salts.⁵ Similarly, the corresponding dichloromethyleneiminium salt⁶ cleanly reacts with the corresponding bis(diisopropylamino)(trimethylsilyl)phosphine affording derivatives **1a**,**b**,† which were isolated as yellow crystals in 87 and 91% yield, respectively (Scheme 2).

The ³¹P NMR spectra of **1a** and **1b** (+70 ppm) did not differentiate between structures **1** and **2**, but the appearance in the ¹³C NMR spectra of a signal at 193 ppm (**1a**: J_{PC} 92 Hz, **1b**: J_{PC} 108 Hz), was strongly suggestive of the *C*-phosphanyl-*C*-chloroiminium form **1**.⁷ The structure of **1a** was established by an X-ray diffraction study (Fig. 1).[‡] In agreement with the lower inversion barrier of nitrogen compared to phosphorus,⁸ the nitrogen atom is in a planar environment, while the phosphorus atom is strongly pyramidalized (sum of the angles: 311.97°), and the P(1)–C(1) (1.891 Å) and the C(1)–N(1) (1.287 Å) bond lengths are in the range expected for a single and a double bond, respectively.

The desired carbenes **2** were however not formed, but taking into account that the halogenotropy is a reversible process,⁹ the

Fig. 1 Solid state structure of compound **1a**. Selected bond lengths [Å] and angles [°]: C(1)-N(1) 1.287(3), C(1)-Cl(1) 1.718(3), C(1)-P(1) 1.891(2), P(1)-N(2) 1.6745(19), P(1)-N(3) 1.680(2); N(1)-C(1)-Cl(1) 116.28(19), N(1)-C(1)-P(1) 123.8(2), Cl(1)-C(1)-P(1) 119.52(13), N(2)-P(1)-N(3) 111.89(11), N(2)-P(1)-C(1) 104.30(10), N(3)-P(1)-C(1) 95.78(10). The solvent (CH₂Cl₂) and the triflate anion are omitted for clarity.

reactivity of **1a** was investigated (Scheme 3).[†] Interestingly, iminium salt **1a** reacted slowly with *tert*-butyl isocyanide at room temperature giving the corresponding phosphonio-(amino)keteneimine **3**, which was isolated as a red oily material in 75% yield (Scheme 3). The structure of **3** was unambiguously established by the two characteristic ¹³C NMR signals [>C=C=N-, δ 158.0, $J_{PC} = 56.7$ Hz), >C=C=N δ 76.4, $J_{PC} =$ 249.7 Hz], and the infra-red absorption v(CCN) located at 2049 cm⁻¹. Similarly, a quantitative reaction was observed when one equivalent of trimethylphosphine was added at -78 °C to a solution of **1a** in CH₂Cl₂. After 3 h at room temperature the formation of ylide **4** was indicated by an AX system in the ³¹P NMR spectra [δ 83.1 (NP), 20.2 (CP), $J_{PP} = 216.6$ Hz]. Compound **4** was isolated as orange crystals in 56% yield and its structure was established by an X-ray diffraction analysis.¹⁰

The formation of keteneimine **3** and ylide **4** highlighted the electrophilic character of the central carbon center of **1a**, which formally reacts as a carbene. Interestingly, no reaction was observed on reacting **1a** with electron poor alkenes such as methyl acrylate or styrene. In contrast, when one equivalent of ethyl vinyl ether was added to **1a** a clean reaction occurred leading to the α , β -unsaturated iminium salt **5**¹¹ with concomitant elimination of bis(diisopropylamino)chlorophosphine. A similar nucleophilic displacement was observed on reacting **1a** with one equivalent of diisopropylamine. Here again, the quantitative formation of the chlorophosphine occurred, and the formamidinium salt **6**¹² was isolated (Scheme 3).

Most probably, the reactions leading to **5** and **6** involve a nucleophilic addition of the reagent followed by $1,2-(C \rightarrow P)$ -chlorotropic shift, as observed in the reactions of **1a** with isonitrile and phosphine. Then, due to the presence of an acidic hydrogen, the phosphonium salts **7** are formed, which undergo phosphine elimination aided by the two electron-donating substituents at carbon, as shown in Scheme 4 for derivative **5**.

2250 *CHEM. COMMUN.*, 2002, 2250–2251

DOI: 10.1039/b206641f

Scheme 4

Work is in progress to synthesise a stable (amino)(phosphonio)carbene which might be a synthetic equivalent of the hitherto unknown monocoordinate cation $R_2NC^{+,13}$

Notes and references

Synthesis of C-phosphanyliminium salts 1a,b: To a CH₂Cl₂ solution (3 mL) of dichloroiminium salt (0.3 mmol) was added at -78 °C one equivalent of bis(diisopropylamino)trimethylsilylphosphine (0.3 mmol). When the temperature reached 0 °C, the solvent was removed under vacuum, and the yellow solid was washed with ether. Iminium salts 1a and 1b were obtained as yellow crystals by recrystallisation from a CH₂Cl₂/ Et₂O solution at -20 °C. 1a: 0.12 g (87%); m.p. 80 °C (decomp.); ³¹P{¹H} NMR (CDCl₃): δ = 68.9. ¹H NMR (CDCl₃): δ = 1.18 (d, ³J_{HH} = 6.6 Hz, 12 H; CH₃C), 1.25 (d, ${}^{3}J_{HH} = 6.6$ Hz, 12 H; CH₃C), 3.49 (sept d, ${}^{3}J_{HH} =$ 6.6 Hz, ${}^{3}J_{PH} = 13.2$ Hz, 4 H; NCHCH₃), 4.21 (d, ${}^{4}J_{PH} = 5.1$ Hz, 3 H; NCH₃), 4.28 (s, 3 H, NCH₃). ¹³C{¹H} NMR (CDCl₃): δ = 24.0 (m; CHCH₃), 47.1 (m; CHN), 49.3 (d, ${}^{3}J_{PC} = 26.8$ Hz; CH₃N), 49.8 (d, ${}^{3}J_{PC} =$ 4.0 Hz; CH₃N), 121.1 (q, ${}^{1}J_{CF} = 320.0$ Hz; CF₃), 193.2 (d, ${}^{1}J_{PC} = 92.0$ Hz; PC). **1b**: 0.14 g (91 %); m.p. 70 °C (decomp.); ³¹P{¹H} NMR (CDCl₃): δ = 70.0. ¹H NMR (CDCl₃): δ = 1.18 (d, ³J_{HH} = 6.6 Hz, 12 H; CH₃CHNP), 1.28 (d, ³J_{HH} = 6.6 Hz, 12 H; CH₃CHNP), 1.54 (d, ³J_{HH} = 6.4 Hz, 6 H; CH₃CHNC), 1.66 (d, ${}^{3}J_{HH} = 6.7$ Hz, 6 H; CH₃CHNC), 3.62 (sept d, ${}^{3}J_{HH}$ = 6.6 Hz, ${}^{3}J_{\text{PH}}$ = 2.5 Hz, 4 H; PNC*H*), $4.77 \text{ (sept, } {}^{3}J_{\text{HH}}$ = 6.7 Hz, 1 H; CNCH), 5.23 (sept d, ${}^{3}J_{HH} = 6.4$ Hz, ${}^{4}J_{PH} = 13.7$ Hz, 1 H; CNCH). ¹³C{¹H} NMR (CDCl₃): δ = 19.0 (s; PNCHCH₃), 20.2 (d, ³J_{PC} = 1.4 Hz; PNCHCH₃), 23.9 (d, ${}^{4}J_{PC} = 6.8$ Hz; CNCHCH₃), 24.4 (d, ${}^{4}J_{PC} = 6.2$ Hz; CNCHCH₃), 49.8 (s; CHNP), 59.5 (s; CHNC), 63.8 (d, ${}^{3}J_{PC} = 37.7$ Hz;

CHNC), 121.1 (q, ${}^1\!J_{\rm CF}$ = 320.0 Hz; CF₃), 193.5 (d, ${}^1\!J_{\rm PC}$ = 108.5 Hz; PC).

General procedure for the reactions leading to **3–6**. To a CH₂Cl₂ solution (3 mL) of *C*-phosphanyliminium salt **1a** (0.15 g, 0.3 mmol) was added at -78 °C two equivalents of reagent (see Scheme 3) in toluene or CH₂Cl₂ solution. The solution was allowed to warm and stirred for one night at room temperature. The solvent was removed under vacuum, and the residue was washed with ether. **3**: Red-brown oil after evaporation of solvent (0.13 g, 75%). **4**: Orange crystals by recrystallisation from a CH₂Cl₂/Et₂O solution at -20 °C (97 mg, 56 %). **5**: Dark oil after evaporation of solvent (0.06 g, 72%). **6**: Pale yellow crystals by recrystallisation from a THF solution at -20 °C (0.06 g, 60%).

‡ *Crystal data* for **1a**: C₁₇H₃₆N₃Cl₃F₃O₃PS, M = 556.87, orthorhombic, *Fdd2*, a = 22.835(1), b = 58.461(3), c = 8.089(1) Å, V = 10798.3(11) Å³, Z = 16, $\rho_c = 1.370$ Mg m⁻³, μ (Mo Kα) = 0.519 mm⁻¹, 32802 reflections (5505 independent, $R_{int} = 0.0512$), 307 parameters, R1 [$I > 2\sigma(I)$] = 0.0399, wR2 [all data] = 0.0960, largest electron density residue: 0.547 e Å⁻³. Data were collected at low temperature (T = 193(2) K) using oilcoated shock-cooled crystals on a Bruker-AXS CCD 1000 diffractometer with MoKα radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods (SHELXS-97)¹⁴ and refined using the least-squares method on $F^{2,15}$ Two positions for a disordered isopropyl were refined anisotropically by using 43 ADP- and distances-restraints. $R_1 = \Sigma ||F_0| - |F_c||/\Sigma|F_0|$ and $wR_2 = (\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2)^{0.5}$. CCDC 190033. See http:// www.rsc.org/suppdata/cc/b2/b206641f/ for crystallographic data in CIF or other electronic format.

- For recent reviews on stable carbenes see *e.g.*: W. A. Herrmann, *Angew. Chem.*, 2002, **114**, 1342; W. A. Herrmann, *Angew. Chem., Int. Ed. Engl.*, 2002, **41**, 1290; D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, *Chem. Rev.*, 2000, **100**, 39; A. J. Arduengo III, *Acc. Chem. Res.*, 1999, **32**, 913.
- 2 For reviews on carbene philicity, see: R. A. Moss, Acc. Chem. Res., 1980, 13, 58; R. A. Moss, Acc. Chem. Res., 1989, 22, 15.
- 3 C. Buron, H. Gornitzka, V. Romanenko and G. Bertrand, *Science*, 2000, **288**, 834.
- 4 Phosphorus Ylides, ed. O. I. Kolodiazhnyi, Wiley, New York, 1999.
- 5 S. Goumri, Y. Leriche, H. Gornitzka, A. Baceiredo and G. Bertrand,
- Eur. J. Inorg. Chem., 1998, 1539.
 H. G. Viehe and Z. Janousek, Angew. Chem., Int. Ed. Engl., 1973, 12,
- 806; G. Wieland and G. Simchen, *Liebigs Ann. Chem.*, 1985, 2178.
 7 All of the known aminocarbenes have ¹³C chemical shifts around 300
- ppm (see ref. 1).
 8 J. Kapp, C. Schade, A. M. El-Nahasa and P. von R. Schleyer, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 2236.
- 9 O. I. Kolodiazhnyi, D. B. Golokhov and I. E. Boldeskul, *Tetrahedron* Lett., 1989, **30**, 2445.
- 10 Unpublished results.
- 11 H. Bredereck, F. Effenberger, D. Zeyfang and K. A. Hirsch, *Chem. Ber.*, 1968, **101**, 4036.
- 12 Formamidinium salts are precursors of bis(amino)carbenes, see for example: R. Alder, P. R. Allen, M. Marray and A. G. Orpen, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 1121.
- 13 D. Talbi, Chem. Phys. Lett., 1999, 313, 626.
- 14 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 15 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, 1997.