www.rsc.org/chemcomm

ChemComm

Mariko Ohde, Hiroyuki Ohde and Chien M. Wai*

Department of Chemistry, University of Idaho, Moscow, Idaho 83844, USA. E-mail: cwai@uidaho.edu; Fax: +1 208 885 6173; Tel: +1 208 885 6173

Received (in Corvallis, OR, USA) 18th June 2002, Accepted 3rd September 2002 First published as an Advance Article on the web 19th September 2002

Rhodium nanoparticles dispersed by a CO_2 microemulsion are effective catalysts for rapid hydrogenation of arenes in supercritical CO_2 .

In a recent communication, we reported the hydrogenation of olefins in supercritical carbon dioxide catalyzed by palladium nanoparticles synthesized in a water-in-CO₂ microemulsion.¹ The Pd nanoparticles were prepared by hydrogen reduction of Pd²⁺ ions (a PdCl₂ solution) dissolved in the water core of the microemulsion. The metal nanoparticles so produced are uniformly dispersed in the supercritical fluid phase and are stable over an extended period of time for catalysis experiments. The CO₂ microemulsion system provides a unique environment for homogenization of conventional heterogeneous catalysis utilizing metal nanoparticles in supercritical fluid CO₂. Reduction of metal ions to its elemental state using hydrogen gas is a simple, clean, and effective way of producing nanometer-sized metal particles in the microemulsion. This method is particularly interesting for studying hydrogenation reactions in supercritical CO₂ because hydrogen gas, which is miscible with CO_2 , can serve both as a reducing agent for metal nanoparticle formation as well as a starting material for subsequent hydrogenation reactions. The advantages of performing hydrogenation reactions in supercritical CO₂ compared with conventional solvent systems are described in the literature.^{2,3} High solubility of hydrogen gas and enhanced diffusion rate in supercritical CO₂ often result in faster and more efficient processes. Tunable solvation strength of supercritical CO₂, easy separation of solvent from products, and minimization of waste generation are attractive features of conducting chemical synthesis in CO2. Based on our previous study, the Pd nanoparticles synthesized in the CO2 microemulsion are not effective for hydrogenation of aromatic compounds.

Developing effective processes for hydrogenation of arenes is of considerable interest because of increasing industrial demands including production of low-aromatic diesel fuels.⁴ The hydrogenation of arenes is conventionally carried out with heterogeneous catalysts. A new approach reported in the recent literature is to use colloidal metallic particles such as rhodium as catalysts in biphasic systems (water-organic) for hydrogenation of arenes.⁵ In this approach, the Rh particles are stabilized in the aqueous phase using surfactants to prevent aggregation, and the arenes are dissolved in the organic phase. Hydrogenation of arenes typically requires 7 h to complete in such a biphasic system. Using a similar approach, Bonilla et al. reported Rh colloids catalyzed hydrogenation of arenes in a water-supercritical ethane biphasic system.⁶ Hydrogenation occurred well in this biphasic system with excellent results obtained for a number of arenes after 62 h of reaction time. We have recently explored the possibility of making rhodium nanoparticles in a water-in-CO₂ microemulsion using the hydrogen gas reduction method. In this paper we report for the first time the hydrogenation of arenes in supercritical CO₂ catalyzed by Rh nanoparticles synthesized in a water-in-CO₂ microemulsion.

Two home-made high-pressure vessels were used for this research. One vessel (54.3 ml volume) was equipped with a fiber optic system (3 mm pathlength) connected to a CCD array UV-Vis spectrometer for *in situ* spectroscopic measurements.⁷

The other vessel with a volume of 6.8 ml was used to store hydrogen gas and the selected arene.

The water-in-CO₂ microemulsions were prepared by mixing an aqueous Rh³⁺ solution (0.1 M RhCl₃ solution) and a mixture of surfactants containing sodium bis(2-ethylhexyl) sulfosuccinate [AOT] (13.6 mM) and a cosurfactant perfluoropolyether phosphate [PFPE-PO₄] (27.2 mM) in the 54.3 ml fiber optic cell. The solution was stirred for one hour in CO_2 at 180 atm to ensure the formation of an optically transparent microemulsion. The supercritical fluid solution showed a slightly orange color indicating the presence of Rh³⁺ ions in the water core that is uniformly dispersed in the fluid phase. Below 180 atm, the solution was somewhat cloudy indicating formation of waterin-CO2 microemulsion was not achieved. Formation of Rh nanoparticles was studied by injecting only H₂ gas into the fiber optic cell containing the microemulsion (water-to-surfactant ratio W = 30) with a 0.1 M Rh³⁺ solution in the water core. The total amount of Rh in the reaction cell was 4.0×10^{-2} mmol. A UV-Vis spectrum of the microemulsion before the hydrogen injection is shown in Fig. 1(a) (spectrum 1). After the injection of H₂, the solution became colorless indicating reduction of Rh³⁺ in the system. The UV-Vis spectrum shown in Fig. 1(a) (spectrum 2) is consistent with the formation of Rh nanoparticles, which are known to absorb in the UV region with virtually no structure at all.8 The supercritical fluid solution was depressurized and collected in hexane by the RESS (rapid expansion of supercritical solution) method.9 A TEM micrograph of the hexane solution (Fig. 1(b)) showed 3-5 nm-sized Rh particles with some aggregation of individual particles. Without the H₂ injection, these nanoparticles were not found in the supercritical fluid solution.

Naphthalene was selected as a CO₂-soluble arene for this hydrogenation study because it absorbs in the UV region that could be monitored *in situ* by the fiber optic cell. Naphthalene and hydrogen (10 atm) were dissolved in CO₂ at a total pressure of 240 atm. This mixture was injected into the fiber optic cell containing the Rh³⁺ ions dissolved in the water core of the CO₂ microemulsion at a pressure of 240 atm controlled by the pump. Fig. 2(a) shows the variation of the UV-Vis spectra of naphthalene with time after the injection of hydrogen and naphthalene into the fiber optic cell at 50 °C and 240 atm. In this experiment, the amount of naphthalene injected into the fiber optic reactor was about 1.4×10^{-1} mmol and the system was stirred with a magnet bar. The spectrometer was turned on 20 seconds after the injection. Fig. 2(b) shows the decrease of absorption at 265 nm with time. In the first 2 min, the absorption

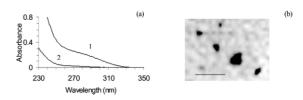
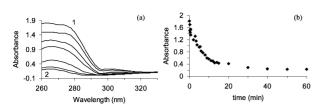
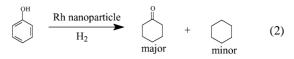


Fig. 1 (a) UV-Vis spectra of Rh^{3+} in the water-in-CO₂ microemulsion before (spectrum 1) and after (spectrum 2) injection of H_2 gas. (b) A TEM micrograph of Rh nanoparticles collected in hexane using the RESS method (scale = 20 nm).




Fig. 2 (a) Variation of UV-Vis spectra of naphthalene with time during hydrogenation process in CO_2 at 50 °C and 240 atm. Each spectrum was taken at zero time (spectrum 1), 10 s, 1 min, 5 min, 10 min, 20 min and 60 min (spectrum 2) from top spectrum to bottom spectrum, respectively. (b) Variation of absorbance of naphthalene at 265 nm with time at 50 °C and 240 atm.

at 265 nm dropped rapidly probably due to mixing after injection because the detector was located at the inlet of the injection line. After this period of time, the decrease in absorbance at 265 nm more or less followed first order kinetics and reached a near constant value (A = 0.2) after 20 min. Tetralin absorbs at 265 nm (spectrum 2 in Fig. 2(a)) but its molar absorption coefficient (5.5×10^2) is about one order of magnitude smaller than that of naphthalene. After one hour, the system was depressurized and the materials in the CO₂ phase were collected in CDCl3 for NMR measurements. The reactor was washed with CDCl₃ to remove all residual materials for a separate NMR measurement. The NMR results indicated that nearly all of the original naphthalene (>96%) injected into the reactor were reacted to form tetralin (eqn. (1)). The NMR results also showed that AOT was not affected by the catalyst. The cosurfactant PFPE-PO₄ does not contain any functional group acceptable to hydrogenation. In the absence of $RhCl_3$ or H_2 gas, the hydrogenation of naphthalene was not observed.

$$\begin{array}{c} & \begin{array}{c} \begin{array}{c} \text{Rh nanoparticle} \\ H_2 \end{array} \end{array}$$
 (1)

When the amount of naphthalene was increased to 7.7×10^{-1} mmol, the % conversion to tetralin was about 82% after 1 h. A plot of the % conversion of naphthalene to tetralin in logarithmic scale *versus* time indicated the curve was near linear in the first 20 min but tended to deviate from a straight line (curved to the right) with further increase in time. The rate constant obtained from the slope was about 1.0×10^{-3} s⁻¹. The reaction rate depended on stirring. Without stirring, the reaction rate was much slower. The Rh nanoparticles formed in the water core of the microemulsion are obviously very reactive and consequently less stable than the Pd nanoparticles formed in the same microemulsion system.

Phenol was selected as a water-soluble arene for this hydrogenation study. Phenol is actually soluble both in supercritical CO₂ and in water.¹⁰ In this experiment (18.2 mM AOT, 36.4 mM \overline{PFPE} -PO₄ and W = 30), phenol was dissolved in the water core of the microemulsion together with Rh³⁺ (3.3 \times 10⁻¹ mmol phenol and 1.7 \times 10⁻² mmol Rh³⁺). The waterin-CO₂ microemulsion was prepared in the same way as the naphthalene experiments. The hydrogenation experiments with phenol were carried out at 50 °C and 240 atm with 10 atm of H₂ gas injected from the 6.8 ml cell into the microemulsion system. This system does not show any characteristic absorptions in the UV-Vis region, therefore only NMR measurements of the initial and the final solutions of the experiments were used for quantification. After 5 min, the products were collected in CDCl₃ for NMR measurements. After depressurization, the compounds remaining in the fiber optic cell were also collected by washing with a CDCl₃ solution. The ¹H-NMR spectrum of the product solution showed that the two groups of peaks (from 6.78 to 7.19 ppm) belonging to phenol were virtually undetectable (Fig. 3(a)). The major product was cyclohexanone as indicated by its characteristic NMR peaks (1.65, 1.79 and 2.26 ppm) and the minor product was cyclohexane (the 1.36 ppm peak) (eqn. (2)). The ratio of cyclohexanone to cyclohexane calculated from the NMR peaks intensities is about 15:1. The

conversion of phenol estimated from the detection limit of the NMR peak was > 92%. In control experiments performed in the absence of RhCl₃ or H₂ gas, the hydrogenation of phenol was not observed.

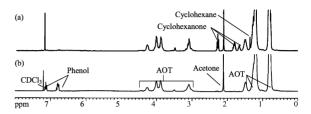


Fig. 3 NMR spectra of (a) the products collected from the phenol hydrogenation experiment in $CDCl_3$ (b) control experiment (phenol, AOT, PFPE-PO₄ and H₂ gas).

Hydrogenation of phenol catalyzed by the dimer of Rh(1) in organic solvents showed products were cyclohexanone and cyclohexanol.11 Hydrogenation of phenol catalyzed by Rh(III) in dichloroethane showed cyclohexanone as the major product with cyclohexanol and cyclohexane as the minor products.¹² In biphasic hydrogenation systems,^{5,6} Rh colloids suspended in the aqueous phase with surfactants converted phenol to cyclohexanol only. Rhodium catalyzed hydrogenation depends on the chemical form of the catalyst and solvation environment. In the hydrogenation of phenol with Rh nanoparticles in the CO₂ microemulsion system, one possible reaction route is the addition of 2 moles of hydrogen to phenol leading to the formation of cyclohexen-1-ol, which undergoes tautomerization to form cyclohexanone. Hydrogenation of cyclohexanone to cyclohexanol is negligible under our reaction conditions according to a separate experiment.

This report demonstrates that Rh nanoparticles can be formed by hydrogen gas reduction of Rh^{3+} ions dissolved in the water core of a water-in-CO₂ microemulsion. The Rh nanoparticles dispersed in the CO₂ phase are capable of catalyzing hydrogenation of CO₂-soluble or water-soluble arenes in supercritical CO₂. The hydrogenation of arenes in supercritical CO₂ catalyzed by the Rh nanoparticles is rapid. The Rh nanoparticles appear stable in the CO₂ microemulsion for about 20–30 min and gradually lose the catalytic capability after that, probably by aggregation. Methods for improving the stability of the Rh nanoparticles in the water-in-CO₂ microemulsion system are currently under investigation.

This work was supported by a DEPSCoR grant (DAAD19-01-0458) from the Army Research Office (ARO) managed by Dr. Stephen Lee of the ARO Chemistry Division.

Notes and references

- 1 H. Ohde, C. M. Wai, H. Kim, J. Kim and M. Ohde, J. Am. Chem. Soc., 2002, **124**, 4540.
- 2 P. G. Jessop, T. Ikariya and R. Noyori, Chem. Rev., 1999, 99, 475.
- 3 A. Baiker, Chem. Rev., 1999, 99, 453.
- 4 A. Stanislaus and B. H. Cooper, Catal. Rev., 1994, 36, 75.
- 5 J. Schulz, A. Roucoux and H. Patin, Chem. Commun., 1999, 535.
- 6 R. J. Bonilla, B. R. James and P. G. Jessop, Chem. Commun., 2000, 941.
- 7 F. Hunt, H. Ohde and C. M. Wai, Rev. Sci. Instrum., 1999, 70, 4661.
- 8 J. A. Creighton and D. G. Eadon, J. Chem. Soc., Faraday Trans., 1991, 87, 3881.
- 9 D. W. Matson, J. L. Fulton, R. C. Petersen and R. D. Smith, *Ind. Eng. Chem. Res.*, 1987, 26, 2298.
- 10 R. A. Van Leer and M. E. Paulaitis, J. Chem. Eng. Data, 1980, 25, 257.
- 11 K. R. Jauszkiewicz and H. Alper, Organometallics, 1983, 2, 1055.
- 12 J. Blum, I. Amer, A. Zoram and Y. Sasson, *Tetrahedron Lett.*, 1983, 24, 4139.