Linear alignment of four sulfur atoms in bis[(8-phenylthio)naphthyl] disulfide: contribution of linear S_{4} hypervalent four-centre six-electron bond to the structure

Warô Nakanishi,* Satoko Hayashi and Takamitsu Arai
Department of Material Science and Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan. E-mail: nakanisi@sys.wakayama-u.ac.jp; Fax: +81 73457 8253; Tel: +81 734578252

Received (in Cambridge, UK) 26th June 2002, Accepted 10th September 2002
First published as an Advance Article on the web 25th September 2002

The four sulfur atoms in bis[8-(phenylthio)naphthyl]-1,1'disulfide are demonstrated to align linearly by the X-ray crystallographic analysis, where the linear \mathbf{S}_{4} alignment is stabilized by the four-centre six-electron interaction.

We have been highly interested in the nonbonded interactions, ${ }^{1}$ especially those leading to linear bonds higher than the three centre-four electron bond ($3 \mathrm{c}-4 \mathrm{e}$), ${ }^{2}$ caused by the direct orbital overlaps between nonbonded atoms. The p-type lone pair orbital of $\mathrm{Se}\left(\mathrm{n}_{\mathrm{p}}(\mathrm{Se})\right)$ in $\mathrm{R}-\mathrm{Se}-\mathrm{R}^{\prime}$ has been well demonstrated to play an important role in the nonbonded interactions. ${ }^{3-5}$ The role of $n_{p}(S)$ in $R-S-R^{\prime}$ in the nonbonded interactions is also of great interest. Here, we report the linear alignment of four sulfur atoms (S_{4}) in bis[8-(phenylthio)naphthyl]-1,1'-disulfide (1a), \dagger demonstrated by the X-ray crystallographic analysis. The linear S_{4} alignment is analyzed by the $4 \mathrm{c}-6 \mathrm{e}$ model and the linear form of $\mathbf{1 a}$ is shown to be substantially more stable than the zig-zag conformer, based on the ab initio MO calculations. Structures of phenyl p, p^{\prime}-dimethoxy and p, p^{\prime}-dinitro derivatives of 1a (1b and $\mathbf{1 c}$, respectively) are essentially the same as that of $\mathbf{1 a}$, although not shown.

1: $\mathrm{Y}=\mathrm{H}(\mathbf{a}), \mathrm{OMe}(\mathrm{b}), \mathrm{NO}_{2}(\mathbf{c})$
Fig. 1 shows the ORTEP diagram of 1a. Only one type of structure corresponds to $\mathbf{1 a}$ in the crystal. The two naphthyl planes in 1a are almost perpendicular to each other. The torsional angle of -89.0° for $\mathrm{C}(9)-\mathrm{S}(2)-\mathrm{S}(3)-\mathrm{C}(25)$ is close to those usually observed in ArSSAR'. ${ }^{6}$ The rotations around the $S(2)-C(9)$ and $S(3)-C(25)$ bonds are fixed for the S_{4} atoms to align linearly: The angles of $S(1)-S(2)-S(3)$ and $S(2)-S(3)-$ $S(4)$ are found to be 168.6 and 166.0°, respectively. The conformations around the outside sulfide S atoms are type \mathbf{A} and those for the inside disulfide S atoms type \mathbf{B} : the structure

Fig. 1 Structure of 1a.
is double type \mathbf{A}-type \mathbf{B} pairing in our definition. ${ }^{3-5}$ The conformation of each Ph plane is determined so that the corresponding $\mathrm{S}-\mathrm{C}(\mathrm{Nap})$ bond lies in the Ph plane. The structure of $\mathbf{1}$ is very close to that of bis[8-(phenylselanyl)na-phthyl]-1,1'-diselenide, $2 .{ }^{3}$

Nonbonded $r(\mathrm{~S}(1), \mathrm{S}(2))$ and $r(\mathrm{~S}(3), \mathrm{S}(4))$ distances in 1a are both 2.988 (2) \AA. The distances are shorter than the sum of van der Waals radii of S atoms $(3.70 \AA)^{7}$ by $0.71 \AA$. The $n_{p}(S)$ orbitals of the outside S atoms must extend toward the area of the $\sigma^{*}(\mathrm{~S}-\mathrm{S})$ orbital of the inside disulfide bond since the nonbonded $r(\mathrm{~S}, \mathrm{~S})$ values are so small and the S_{4} atoms align linearly. Consequently, the interactions lead to the formation of two nonbonded $n_{p}(S)-\sigma^{*}(S-S) 3 c-4 e$ bonds. The $4 \mathrm{c}-6 \mathrm{e}$ interaction of the $n_{p}(S)-\sigma^{*}(S-S)-n_{p}(S)$ type will be constructed, if the two $3 \mathrm{c}-4 \mathrm{e}$ are effectively connected by the central σ^{*} (SS) orbital. The $4 \mathrm{c}-6 \mathrm{e}$ would be more stabilized by the two phenyl groups since the electrons of $4 \mathrm{c}-6 \mathrm{e}$ may also delocalize over the phenyl π-orbitals due to the advantageous conformation of the groups in 1a.
In order to elucidate the nature of $4 \mathrm{c}-6 \mathrm{e}$ of the linear S_{4} atoms in 1, ab initio MO calculations are performed on di(naphthyl)-1,1'-disulfide (3) and bis[8-(methylthio)naphthyl]-1,1'-disulfide (4), using the Gaussian 98^{8} program. The $6-311+G(d)$ basis sets are employed for S and the $6-31 \mathrm{G}(\mathrm{d})$ for H and C at the DFT (B3LYP) level. Linear and zig-zag conformers are optimized to be stable. \ddagger Natural charges $(Q n)^{9}$ of atoms are also calculated for the optimized structures. Table 1 collects the results. ${ }^{10}$ Molecular orbitals are also depicted on the optimized structures. ${ }^{11}$ HOMO-2 of 4 (linear) is shown in Fig. 2.

2 ($\mathrm{Z}=\mathrm{Se}, \mathrm{A}=\mathrm{SePh}$) 3 ($Z=S, A=H$) $4(Z=S, A=S M e)$

5 (Z = S, A = H) 6 ($Z=S, A=S M e)$

As shown in Table 1, the zig-zag conformer of $\mathbf{3}$ ($\mathbf{3}$ (zig-zag)) is evaluated to be more stable than 3 (linear) by $14.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Table 1 Calculated energies (E) and natural charges ($Q n$) for linear and zigzag conformers of $\mathbf{3}$ and $\mathbf{4}$ at the DFT (B3LYP) level ${ }^{a}$

Compd	E / au	$Q n\left({ }^{1} \mathrm{~S}\right)$	$Q n\left({ }^{8} \mathrm{~S}\right)$
$\mathbf{3}$ (linear)	-1566.9983	0.1469	$(0.2442)^{b}$
$\mathbf{3}$ (zig-zag)	-1567.0039	0.1025	$(0.2496)^{b}$
$\Delta(\mathbf{3})^{c}$	0.0056^{d}	0.0444	$(-0.0054)^{b}$
$\mathbf{4}$ (linear)	-2442.0293	0.1334	0.2446
$\mathbf{4}$ (zig-zag)	-2442.0268	0.1285	0.2123
$\Delta(\mathbf{4})^{c}$	-0.0025^{e}	0.0049	0.0323
$\Delta \Delta^{f}$	-0.0081^{g}	-0.0395	$(0.0377)^{b}$

${ }^{a}$ The 6-311+G(d) basis sets are employed for S and the $6-31 \mathrm{G}(\mathrm{d})$ for H and C. ${ }^{b}$ Value for ${ }^{8} \mathrm{H}$ of 3. ${ }^{c} P$ (linear) $-P$ (zig-zag) where $P=E$ and $Q n .{ }^{d} 14.7$ $\mathrm{kJ} \mathrm{mol}{ }^{-1} .{ }^{e}-6.6 \mathrm{~kJ} \mathrm{~mol}^{-1} . f \Delta(4)-\Delta(\mathbf{3}) . g-21.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Fig. 2 HOMO-2 of 4 (linear), which corresponds to ψ_{3} of $\mathrm{S}_{4} 4 \mathrm{c}-6 \mathrm{e}$.
$\left[=\Delta_{E}(3)=E(3\right.$ (linear)) $-E(3$ (zig-zag) $)] .4$ (linear) becomes more stable than 4 (zig-zag): $\Delta_{E}(4)=-6.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The contribution of linear $S_{4} 4 \mathrm{c}-6 \mathrm{e}$ for the naphthalene system is estimated by $\Delta \Delta_{E}=\Delta_{E}(4)-\Delta_{E}(3)$, which is -21.3 kJ mol^{-1}. The results show that the two S atoms at the $8,8^{\prime}$ positions in 4 stabilize the linear conformer containing $S_{4} 4 \mathrm{c}-6 \mathrm{e}$ by $21.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The direction of charge transfer (CT) in S_{4} $4 \mathrm{c}-6 \mathrm{e}$ of the $\mathrm{n}_{\mathrm{p}}(\mathrm{S}) \rightarrow \sigma^{*}(\mathrm{~S}-\mathrm{S}) \leftarrow \mathrm{n}_{\mathrm{p}}(\mathrm{S})$ type is rationalized by analyzing $Q n(\mathrm{~S})$. While $\Delta_{Q n}(3)[=Q n(3$ (linear)) $-Q n(3$ (zig-zag))] for ${ }^{1} \mathrm{~S}$ is $0.044, \Delta_{Q n}(4)=0.005$ for ${ }^{1} \mathrm{~S}$. Therefore, $\Delta \Delta_{Q n}=\Delta_{Q n}(4)-\Delta_{Q n}(3)=-0.039$ for ${ }^{1}$ S. However, $\Delta \Delta_{Q n}$ $=0.038$ for ${ }^{8} \mathrm{~S}$, although H atoms are placed at $8,8^{\prime}$-positions in 3 , instead of S atoms in 4 . The results are the reflection of CT from ${ }^{8} \mathrm{~S}$ to ${ }^{1} \mathrm{~S}$ in the formation of 4 (linear). They are well explained by the CT of the $n_{p}(S) \rightarrow \sigma^{*}(S-S) \leftarrow n_{p}(S)$ direction. HOMO-2 of 4 (linear) shown in Fig. 2 clearly corresponds to ψ_{3} of $S_{4} 4 c-6 e$, which also supports the $4 c-6 e$ nature of the S_{4} in 4 (linear). These results well demonstrate the contribution of $4 \mathrm{c}-6 \mathrm{e}$ of linear S_{4} atoms to the structure of $\mathbf{1}$.

It is worthwhile to comment on the effect of crystal packing. Both linear and zig-zag structures are reported for substituted diphenyl disulfides. The structure depends on the substituents at not only ortho ${ }^{12}$ but also meta and/or para position(s). ${ }^{6}$ The through-bond interaction plays an important role in determining the structures ${ }^{13}$ but the contribution of the crystal packing effect may also be important in the benzene systems. On the other hand, the structures of 1 must be mainly stabilized by $4 \mathrm{c}-6 \mathrm{e}$ of linear S_{4} since the nonbonded $S-S$ distances in the naphthalene system are shorter than those of the benzene system. Ab initio MO calculations are also performed on 5 and $\mathbf{6},{ }^{14}$ similarly to the cases of $\mathbf{3}$ and $\mathbf{4}$. The results support that the contribution of linear $S_{4} 4 c-6 e$ is larger for the naphthalene system than the benzene system. ${ }^{15}$ The structures of $\mathbf{1 b}$ and $\mathbf{1 c}$ are also of the linear type and not changed depending on the substituents, which is another support for the contribution of the $4 \mathrm{c}-6 \mathrm{e}$ on the structure of 1 .

An advanced study on the nature of $4 \mathrm{c}-6 \mathrm{e}$ is in progress in our laboratory. Details will be reported elsewhere.

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) (Nos. 11120232, 11166246, and 12042259) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, by a Grant-in-Aid for Encouragement of Young scientists (No. 13740354) from Japan Society for Promotion of Science, and by the Hayashi Memorial Foundation for Female Natural Scientists.

Notes and references

\dagger Elemental analyses were satisfactory for 1a. Yield $68 \%, \mathrm{mp} 170.2^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $4 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=1.1$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=1.5$ and 7.2 Hz , $2 \mathrm{H}), 7.90(\mathrm{dd}, J=1.4$ and $8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDC1}_{3}: 75.5 \mathrm{MHz}\right) \delta$ $125.5,125.8,125.9,126.3,127.1,127.4,128.5,129.0,131.4,133.9,134.6$, $136.4,138.5$, and 140.0; Crystal data for 1a: $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~S}_{4}, M_{\mathrm{r}}=534.77$, monoclinic, space group $P 2_{1} / a$ (No. 14), $a=10.420(4), b=24.167(5), c$
$=10.622(4) \AA, \beta=106.52(3)^{\circ}, V=2564(1) \AA^{3}, Z=4, D_{\mathrm{c}}=1.385 \mathrm{~g}$ cm^{-3}, Mo-K α radiation, $\lambda=0.71069 \AA, \mu=3.91 \mathrm{~cm}^{-1}, T=298 \mathrm{~K} ; 6372$ reflections were collected, 6054 were unique, $R_{\text {int }} 0.061$; final refinement to convergence on F^{2} with all non- H atoms anisotropic and all H atoms modeled isotropically gave $R=0.056$ ($F, 2502$ obs. data only) and $R_{\mathrm{w}}=$ $0.085\left(F^{2}\right.$, all data), GOF $=1.16,338$ refined parameters; max. $/ \mathrm{min}$ residual electron density: $0.33 /-0.51$ e \AA^{-3}. CCDC reference number 188993. See http://www.rsc.org/suppdata/cc/b2/b206137f/ for crystallographic data in CIF or other electronic format.
\ddagger The notation of linear ($4 \mathrm{c}-6 \mathrm{e}$) and zig-zag conformers are also applied to 3 and 5 , where $\mathrm{A}=\mathrm{H}$.

1 Molecular Interactions. From van der Waals to Strongly Bound Complexes, ed. S. Scheiner, Wiley, New York, 1997; K. D. Asmus, Acc. Chem. Res., 1979, 12, 436-442; W. K. Musker, Acc. Chem. Res., 1980, 13, 200-206.
2 G. C. Pimentel, J. Chem. Phys., 1951, 19, 446; J. I. Musher, Angew Chem., Int. Ed. Engl., 1969, 8, 54; M. M. L. Chen and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 1647; P. A. Cahill, C. E. Dykstra and J. C. Martin, J. Am. Chem. Soc., 1985, 107, 6359.
3 W. Nakanishi, S. Hayashi and S. Toyota, Chem. Commun., 1996 371-372; W. Nakanishi, S. Hayashi and S. Toyota, J. Org. Chem., 1998, 63, 8790-8800; S. Hayashi and W. Nakanishi, J. Org. Chem., 1999, 64 6688-6696.
4 W. Nakanishi, S. Hayashi and T. Uehara, J. Phys. Chem. A, 1999, 103, 9906-9912; W. Nakanishi, S. Hayashi and H. Yamaguchi, Chem. Lett., 1996, 947-948.
5 W. Nakanishi, S. Hayashi, A. Sakaue, G. Ono and Y. Kawada, J. Am Chem. Soc., 1998, 120, 3635-3646; W. Nakanishi and S. Hayashi, J. Org. Chem., 2002, 67, 38-48.
6 M. Sacerdoti, G. Gilli and P. Domiano, Acta Crystallogr., Sect. B, 1975, 31, 327; M. R. Spirlet, G. van den Bossche, O. Dideberg and L. Dupont, Acta Crystallogr., Sect. B, 1979, 35, 203; D. Cannon, C. Glidewell, J. N. Low and J. L. Wardell, Acta Crystallogr., Sect. C, 2000, 56, 1267; J. L Wardell, J. N. Low and C. Glidewell, Acta Crystallogr., Sect. C, 2000 , 56, 679; J. D. Korp and I. Bernal, J. Mol. Struct., 1984, 118, 157.
7 L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, Ithaca, New York, 1960, ch. 7.
8 Gaussian 98, Revision A. 9 is employed for the calculations: M. J Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.

9 NBO Ver. 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter and F Weinhold.
10 Model calculations are also carried out on $\mathrm{H}_{2} \mathrm{~S}-\mathrm{SH}-\mathrm{SH}-\mathrm{SH}_{2}$ (model a) with the B3LYP/6-311++G(3df,2dp) method, where the nonbonded distances are fixed at the observed value of 1a. Linear structure is predicted to be most stable under the partial optimization. CT of the $n\left(\mathrm{H}_{2} \mathrm{~S}\right) \rightarrow \sigma^{*}(\mathrm{SH}-\mathrm{SH}) \leftarrow n\left(\mathrm{SH}_{2}\right)$ type is well demonstrated by $Q n\left(\mathrm{H}_{2} \mathrm{~S}\right)$ and $Q n\left(\mathrm{H}_{2} \mathrm{~S}_{2}\right)$ of model a (linear), which are calculated to be 0.060 and -0.120 , respectively.
11 The MacSpartan Pro program is used (H. J. Hehre, Wavefunction Inc., Irvine, CA, 92612 USA), 1999-2000.
12 J. D. Lee and M. W. R. Bryant, Acta Crystallogr., Sect. B, 1970, 26, 1729; C. Glidewell, J. N. Low and J. L. Wardell, Acta Crystallogr., Sect B, 2000, 56, 893; T. C. W. Mak, Wai-Hing Yip, Wing-Hong Chan, G Smith and C. H. L. Kennard, Aust .J. Chem., 1989, 42, 1403; A Kucsman, I. Kapovits, L. Parkanyi, G. Argay and A. Kalman, J. Mol. Struct., 1984, 125, 331; D. J. Dahm, F. L. May, J. J. D'Amico, C. C. Tung and R. W. Fuhrhop, Cryst. Struct. Commun., 1977, 6, 393; J. C. Barnes, J. D. Paton, W. Schroth and L. Moegel, Acta Crystallogr., Sect. B, 1982, 38, 1330.
13 The contribution of the through-bond interaction on the structure is discussed exemplified by $1-\left(p-\mathrm{YC}_{6} \mathrm{H}_{4} \mathrm{Se}\right) \mathrm{C}_{10} \mathrm{H}_{7}$. See W. Nakanishi and S. Hayashi, Eur. J. Org. Chem., 2001, 3933-3943.

14 While $\Delta_{E}(\mathbf{5})$ is estimated to be $10.8 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{E}(\mathbf{6})=-3.7 \mathrm{~kJ}$ mol^{-1}
$15 \Delta \Delta_{E}$ for the benzene system is estimated by $\Delta_{E}(\mathbf{6})-\Delta_{E}(\mathbf{5})$, similarly to the case of naphthalene system. The values is $-14.5 \mathrm{~kJ} \mathrm{~mol}^{-114}$

