Catalytic enantioselective intermolecular [2 + 2 + 2] cycloaddition of an alkene and two alkynes[†]

Shin-ichi Ikeda,* Hirokazu Kondo, Taro Arii and Kazunori Odashima

Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan. E-mail: ikeshin@phar.nagoya-cu.ac.jp

Received (in Cambridge, UK) 27th August 2002, Accepted 9th September 2002 First published as an Advance Article on the web 20th September 2002

A catalytic enantioselective intermolecular [2 + 2 + 2] cycloaddition of one molecule of alkene (enone) and two molecules of alkyne was developed in the presence of a nickel complex modified by chiral monodentate oxazoline ligands, which have not previously been used as chiral ligands for transition metals in asymmetric catalysts, and an aluminium phenoxide.

[2 + 2 + 2] Cycloadditions are attractive transformations in organic synthesis, since they lead to six-membered cyclic compounds with the formation of three new carbon-carbon bonds in a single operation. Several transition metal complexes promote these reactions as catalysts or stoichiometric reagents.^{1,2} Recently, a few examples of asymmetric intramolecular cycloadditions have been reported, that is, a chiral cyclopentadienyl cobalt(1) complex-mediated reaction of endivnes.³ the cobalt(1)-mediated reaction with chiral auxiliarysubstituted endivnes,⁴ and a nickel(0)-catalyzed reaction of divnes with acetylene have been realized based on a strategy that involves a new enantiotopic group selective formation of a metallacycle.5 We have envisaged the development of a new asymmetric cycloaddition of one molecule of alkene and two molecules of alkyne in the presence of transition metal catalysts (M) modified by chiral ligands (L^*) [eqn. (1)].

In the course of our studies on nickel-catalyzed intermolecular domino coupling of enones 1, alkynes 2, and organometallics,⁶ we found that a binary metal system of nickel and an aluminium species catalyzed the regioselective [2 + 2 +

Table 1 Asymmetric induction in Ni/Al-catalyzed cycloaddition of **1a** with **2a** in the presence of some chiral ligands L^{*a}

Run	L*	Isolate yield of 3aa (%)	Enantioselectivity ^b (sign of $[\alpha]$)	
1	4	15	0% ee	
2	5	27	10% ee (+)	
3	6	28	18% ee (+)	
4	7	0	_	
5	8	0	_	
6	(S)- 9a	67	23% ee (+)	
7	(S)- 9b	66	28% ee (+)	
8	(R)-9c	77	34% ee (-)	
9	(R)-9d	28	2% ee (-)	
10	10	22	45% ee (-)	
^{<i>a</i>} The reac ratio: 1:2.2:0.05	tion was carried o [1a]:[2a]:[N 5:0.1:0.4:1. ^b De	ut in THF at room terr Ni(acac) ₂]:[L*]:[Me ₃ A termined by chiral HPI	nperature for 2 h; molar l]:[PhOH] = LC.	

† Electronic supplementary information (ESI) available: experimental and spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b208313b/ 2] cycloaddition of **1** and **2**.⁷ A precatalyst, Ni(acac)₂, reacts with some of the added Me₃Al to be converted into an active Ni(0) species. The residual Me₃Al functions as a Lewis acid and activates **1**. When phenol (PhOH) is added to the reaction medium, a more acidic aluminium phenoxide species (Me_nA-l(OPh)_{3-n} (n = 0-2)) is generated from the reaction with Me₃Al *in situ*. In this paper, we describe the enantioselective [2 + 2 + 2] cycloaddition of **1** with **2**, catalyzed by a nickel complex modified by chiral monooxazoline ligands such as **9** and **10** and an aluminium species [eqn. (2)].

Initially, we screened various chiral ligands, which would coordinate to the Ni(0) catalyst and cause asymmetric induction, in the reaction using **1a** and **2a**. The results are summarized in Table 1.‡ Some reputed chiral phosphine ligands like **4**,⁸ **5**,⁹ **6**,¹⁰ and **7**¹⁰ and a bidentate bisoxazoline ligand **8**¹¹ gave no or

only low enantioselectivity (runs 1–5). On the other hand, when the reaction was performed with a monodentate oxazoline like 9,¹² asymmetric induction occurred to give optically active **3aa**. Better results were obtained with 2-phenyl derivatives like 9a-9c (R = Ph) (runs 6–8), compared with a 2-methyl derivative 9d(R = Me) (run 9). Although the differences in asymmetric induction according to the substituent R' at the 4-position (stereogenic center) of 9 were slight, the introduction of two phenyl groups to the 5-position of 9 led to an interesting result. Thus, when the reaction was carried out with a 2,4,5,5-tetraphenyl derivative **10**, the enantioselectivity of **3aa** increased to 45% (run 10).

The absolute stereochemistry of (-)-**3aa** was determined to be (3a*R*, 7a*S*) based on an examination of the ¹H NMR spectra

DOI: 10.1039/b208313b

Entry	1	2	9c or 10	3	Yield of 3^{b} (%)	Enantioselectivity
1	1 a	2b	(<i>R</i>)-9c	3ab	93 ^c	25% ee ^d
2			10		66 ^c	48% ee ^d
3	1a	2c	(R)- 9 c	3ac	67	33% ee ^e
4			10		77	62% ee ^e
5	1a	2d	(R)- 9 c	3ad	93	$22\% ee^d$
6			10		72	58% ee ^{de}
7	1 a	2e	(R)- 9c	3ae	47	20% ee ^e
8			10		65	55% ee ^e
9	1b	2a	(R)- 9c	3ba	74	53% ee ^f
10			10		21	44% ee ^f
11	1b	2d	(R)- 9c	3bd	95	10% ee ^e
12			10		25	40% ee ^e
13	1c	2b	(R)- 9c	3cb	92	$4\% ee^e$
14			10		65	4% ee ^e

^{*a*} The reaction was carried out in THF at room temperature for 2 h; molar ratio: $[1]:[2]:[Ni(acac)_2]:[9c \text{ or } 10]:[Me_3Al]:[PhOH] = 1:2.2:0.05:0.1:0.4:1.$ ^{*b*} Isolated yield. ^{*c*} Regioselectivity: 95%. ^{*d*} Determined by chiral GC. ^{*e*} Determined from ¹H NMR spectra using a chiral shift reagent (Eu(hfc)_3). ^{*f*} Determined by chiral HPLC.

of diastereomeric (S)-O-methylmandelates¹³ **13** and **14**, which were derived from **11** (Scheme 1).§

The chiral monodentate oxazoline ligands **9c** and **10** were applied to the enantioselective cycloaddition of **1** with **2** (Table 2). These reactions, except the reaction using **2b** (entries 1 and 2), occurred with perfect regioselection. While the higher enantioselection was shown in the reactions using ligand **10**, the yields of **3ba** and **3bd** decreased to 21 and 25%, respectively, and the enantiomeric excess (ee) of **3bd** also did not improve (entries 9–12). The reaction of a cyclohexenone **1c** with **2b** gave **3cb** in lower enantioselectivity (entries 13 and 14), compared with the reactions using cyclopentenones **1a** and **1b**.

In summary, we have described the first example of catalytic enantioselective intermolecular [2 + 2 + 2] cycloaddition of one molecule of alkene and two molecules of alkyne. The reaction described here was accomplished using a binary metal catalytic system consisting of a nickel complex modified by monodentate oxazolines like **11** and **12**, which have not previously been used as chiral ligands for transition metals in asymmetric catalysts,¹⁴ and an aluminium phenoxide.

This work was supported by a Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

Notes and references

‡ The experimental procedure for the formation of **3aa** (run 8 in Table 1) is as follows: to a solution of Ni(acac)₂ (14 mg, 0.05 mmol) and (R)-**11d** (23

mg, 0.1 mmol) in THF (5 mL) was added Me₃Al in a 1.0 M hexane solution (0.4 mL) at 0 °C under N₂. After stirring for 5 min, phenol (109 mg, 1.1 mmol) in THF (1 mL) was added to this solution, and the mixture was stirred for 5 min. To the dark red solution were added **2a** (180 mg, 2.2 mmol) and **1a** (82 mg, 1.0 mmol) at 0 °C, and the mixture was then stirred at room temperature for 2 h. Aqueous HCI (0.2 M, 30 mL) was added, and stirring was continued for 10 min. The aqueous layer was extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ for 30 min, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane–AcOEt = 14:1, Rf = 0.31) to give **3aa** (189 mg, 77%). Enantiomeric excess (ee) was determined to be 34% by chiral HPLC (column: Daicel CHIRALPAK AS, 0.46 × 25 cm; solvent: hexane–*i*PrOH = 19:1; flow rate: 0.2 mL min⁻¹; detector: RI; retention time: (+)-**3aa**, 19.9 min; (-)-**3aa**, 22.0 min).

§ When **3aa** was treated with LiAlH₄ in Et₂O at 0 °C, two alcohols were obtained in total 95% yield. One was determined to be **11** by NOE experiment of the corresponding 3,5-dinitrobenzoate. The other, although it was gradually decomposed, was confirmed to be **12**. On the other hand, the reduction of **3aa** using L-selectride[®] at -78 °C gave **12** in 81% yield along with a trace amount of **11**.

- N. E. Schore, in *Comprehensive Organic Synthesis*, ed, B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 5, ch. 9.4, p. 1129; D. B. Grotjahn, in *Comprehensive Organometallic Chemistry II*, ed, L. S. Hegedus, Pergamon, Oxford, 1995, vol. 12, ch. 7.4.
- 2 K. P. C. Vollhardt, Angew. Chem., Int. Ed. Engl., 1984, 23, 539; N. E. Schore, Chem. Rev., 1988, 88, 1081; M. Lautens, W. Klute and W. Tam, Chem. Rev., 1996, 96, 49; S. Saito and Y. Yamamoto, Chem. Rev., 2000, 100, 2901.
- 3 R. L. Halterman and K. P. C. Vollhardt, *Organometallics*, 1988, 7, 883.
- 4 F. Slowinski, C Aubert and M. Malacria, *Tetrahedron Lett.*, 1999, **40**, 5849.
- 5 Y. Sato, T. Nishimata and M. Mori, J. Org. Chem., 1994, 59, 6133; Y. Sato, T. Nishimata and M. Mori, *Heterocycles*, 1997, 44, 443.
- 6 S. Ikeda, Acc. Chem. Res., 2000, 33, 511; S. Ikeda, J. Synth. Org. Chem. Jpn., 2001, 59, 960.
- S. Ikeda, N. Mori and Y. Sato, J. Am. Chem. Soc., 1997, **119**, 4779; N. Mori, S. Ikeda and Y. Sato, J. Am. Chem. Soc., 1999, **121**, 2722; S. Ikeda, H. Kondo and N. Mori, Chem. Commun., 2000, 815.
- 8 R. Noyori and H. Takaya, Acc. Chem. Res., 1990, 23, 345.
- 9 T. Hayashi, Acc. Chem. Res., 2000, 33, 354
- 10 M. Sawamura and Y. Ito, Chem. Rev., 1992, 92, 345.
- 11 A. Phaltz, Acc. Chem. Res., 1993, 26, 339.
- 12 M. J. Kurth and O. H. W. Decker, J. Org. Chem., 1985, 50, 5769; A. I. Meyers and M. Shipman, J. Org. Chem., 1991, 56, 7098; K. Kamata, I. Agata and A. I. Meyers, J. Org. Chem., 1998, 63, 3113.
- 13 B. M. Trost, J. L. Belletire, S. Godleski, P. G. McDougal and J. M. Balkovec, J. Org. Chem., 1986, 51, 2370.
- 14 S. Dakovic, L. Liscic-Tumir, S. I. Kirin, V. Vinkovic, Z. Razr, A. Suste and V. Sunjic, J. Mol. Catal. A: Chem., 1997, **118**, 27; Y. Takemoto, S. Kuraoka, N. Hamaue and C. Iwata, *Tetrahedron: Asymmetry*, 1998, **7**, 993; S. Ikeda, D.-M. Cui and Y. Sato, J. Am. Chem. Soc., 1999, **121**, 4712.