Terminal ruthenium carbido complexes as σ-donor ligands \dagger

Andrew Hejl, Tina M. Trnka, Michael W. Day and Robert H. Grubbs*
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. E-mail: rhg@its.caltech.edu

Received (in Purdue, IN, USA) 13th August 2002, Accepted 6th September 2002
First published as an Advance Article on the web 30th September 2002

The terminal carbido ligand of $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{RuC}$ coordinates to other metal centers in a σ-donor fashion, as in $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl}-$ $)_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Pd}(\mathrm{Cl})_{2}\left(\mathrm{SMe}_{2}\right)$ and $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Mo}(\mathrm{CO})_{5}$.

In 1995, we reported that the bis(triphenylphosphine)ruthenium benzylidene complex $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{Ru}=\mathrm{CHPh}$ reacts with trans-2,3-dicarbomethoxymethylenecyclopropane to yield a unique 2,3-dicarbomethoxycyclopropane carbene complex, $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{Ru}=\mathrm{C}\left(\mathrm{CHCO}_{2} \mathrm{Me}\right)_{2}(\mathbf{1}) .{ }^{1}$ Recent work by Heppert and co-workers, in which they obtain the terminal carbido complex $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{RuC}$ (2) from the closely related bis(tricyclohexylphosphine) derivative $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{Ru}=\mathrm{CHPh}$ plus trans-2,3-dicarbomethoxymethylenecyclopropane, ${ }^{2}$ prompted us to re-examine the chemistry of $\mathbf{1}$.

The addition of at least two equivalents of PCy_{3} to $\mathbf{1}$ causes the instant release of dimethyl fumarate and provides $\mathbf{2}$ in good yield (70%) (Scheme 1). \ddagger This reaction confirms that the more electron-donating PCy_{3} ligands are required for olefin elimination, and provides an isolated product yield greater than for the transformation of $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{Ru}=\mathrm{CHPh}$ to $2(54 \%) .{ }^{2}$ Thus, $\mathbf{2}$ is accessible by at least two straightforward routes. In contrast to anionic carbido complexes of molybdenum and tungsten, ${ }^{3} 2$ also has excellent stability toward air and moisture. For these reasons, it is a promising candidate for potential synthetic applications.

For example, complex $\mathbf{2}$ displaces one of the dimethylsulfide ligands in $\mathrm{Pd}(\mathrm{Cl})_{2}\left(\mathrm{SMe}_{2}(\mathbf{3})^{4}\right.$ to form the bimetallic μ-carbido

3
5

Fig. 1 Crystal structures of $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{RuC}(\mathbf{2}), \mathrm{Pd}\left(\mathrm{Cl}_{2}\right)_{2}\left(\mathrm{SMe}_{2}\right)_{2}(\mathbf{3})$, and $\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{Cl})_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Pd}(\mathrm{Cl})_{2}\left(\mathrm{SMe}_{2}\right)(4)$. For clarity, all hydrogen atoms have been omitted. Displacement ellipsoids are drawn at 50% probability.

Table 1 Selected bond lengths (A) and angles (deg)

	Complex 2	Complex 3	Complex 4
$[\mathrm{Ru}-\mathrm{C}(1)]$	$1.632(6)$	-	$1.662(2)$
$[\mathrm{Ru}-\mathrm{Cl}]^{a}$	$2.376(2)$	-	$2.350(1)$
$[\mathrm{Ru}-\mathrm{P}]^{a}$	$2.427(2)$	-	$2.436(1)$
$[\mathrm{P}-\mathrm{C}]^{a}$	$1.854(6)$	-	$1.853(2)$
$[\mathrm{Pd}-\mathrm{Cl}]^{a}$	-	$2.292(1)$	$2.301(1)$
$[\mathrm{Pd}-\mathrm{S}]$	-	$2.319(1)$	$2.356(1)$
$[\mathrm{Pd}-\mathrm{C}]$	-	-	$1.946(2)$
$[\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cl}]$	$156.66(5)$	-	$158.27(2)$
$[\mathrm{P}-\mathrm{Ru}-\mathrm{P}]$	$160.66(5)$	-	$162.89(2)$
$[\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}]$	-	180	$178.13(2)$
$[\mathrm{Ru}-\mathrm{C}-\mathrm{Pd}]$	-	-	$175.1(1)$
$[\mathrm{L}-\mathrm{Pd}-\mathrm{S}]$	-	180	$170.50(5)$
${ }^{a}$ Average values.			

scaffold can support terminal and bridging carbido ligands is an exciting development. In this communication, we have demonstrated that the terminal carbido complex 2 can coordinate to other metal centers in a σ-fashion, which contributes to our understanding of these unusual ligands.

This research was supported by the US National Science Foundation. We thank Lawrence M. Henling for contributions to the crystallography, Jeremy May for chemicals, and Prof. Jonas Peters and Andrew Waltman for helpful discussions.

Notes and references

\ddagger Synthesis of 2: Under a nitrogen atmosphere, $40.0 \mathrm{mg}(0.143 \mathrm{mmol})$ of PCy_{3} was added to a solution of $30.1 \mathrm{mg}(0.0353 \mathrm{mmol})$ of $\mathbf{1}$ in 3 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was stirred for 4 h at r.t., and then the solvent was removed under vacuum. The resulting solid was washed with hexanes and dried to yield 18.5 mg of $\mathbf{2}$ as a light brown powder (70\%). Synthesis and characterization of 4: Under a nitrogen atmosphere, $50.2 \mathrm{mg}(0.0674 \mathrm{mmol})$ of $\mathbf{2}$ and $20.4 \mathrm{mg}(0.0676 \mathrm{mmol})$ of $\mathbf{3}$ were dissolved in $5 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$. After stirring for 5 h at r.t., the solvent was removed under vacuum. The resulting solid was reprecipitated from benzene/hexanes and washed with hexanes to yield 42.1 mg of 4 as a pale yellow powder (63%). ${ }^{1} \mathrm{H}$ NMR (299.82 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 2.74$ (m, Cy), 2.32 (pseudodoublet, Cy), 2.26 (s, SMe), 1.87 (broad s, Cy), 1.70 (pseudotriplet, Cy), $1.30(\mathrm{~m}, \mathrm{Cy}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.64 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 40.85(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125.72 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 381.23$ $(\mathrm{m}, \mu-\mathrm{C}), 128.30\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 32.96\left(\mathrm{t}, J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{Cy}\right), 30.59(\mathrm{~s}, \mathrm{Cy}), 28.27$ ($\mathrm{t}, J_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{Cy}$), $26.84(\mathrm{~s}, \mathrm{Cy})$. Generation and characterization of 5: A screw-cap NMR tube was charged with $50.6 \mathrm{mg}(0.0679 \mathrm{mmol})$ of $\mathbf{2}, 20.1$ $\mathrm{mg}(0.0681 \mathrm{mmol})$ of $\left[(\mathrm{CO})_{5} \mathrm{Mo}\left(\mathrm{NMe}_{3}\right)\right]$, and 0.7 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Spectra were recorded after 6 h at r.t. ${ }^{1} \mathrm{H}$ NMR $\left(299.82 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 2.58$ (s, Cy), 2.01 (s, Cy), 1.68 (m, Cy), 1.46 (m, Cy), 1.13 (m, Cy). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.121.64 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 33.80(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125.72 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\delta): 446.31(\mathrm{~s}, \mathrm{RuC}), 209.12(\mathrm{~s}, \mathrm{CO}), 205.15(\mathrm{~s}, \mathrm{CO}), 32.98\left(\mathrm{t}, J_{\mathrm{CP}}=9 \mathrm{~Hz}\right.$, Cy), 30.87 (s, Cy), 28.26 (t, $\left.J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{Cy}\right), 27.00(\mathrm{~s}, \mathrm{Cy}) . \operatorname{IR}\left(v_{\mathrm{CO}}, \mathrm{cm}^{-1}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2073 (m), 1966 (s), 1943 (s).
§ Crystal data for 2: $\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Ru} \cdot \mathrm{C}_{6} \mathrm{H}_{6}, M=822.92$, monoclinic, space group $P 2_{1} / n(\# 14), a=9.9665(7), b=19.737(2), c=21.505(2) \AA, \beta=$
$92.128(1)^{\circ}, V=4227.3(5) \AA^{3}, T=98 \mathrm{~K}, Z=4, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.601$ $\mathrm{mm}^{-1}, 62446$ measured reflections, 10049 unique, 7579 reflections with I $>2 \sigma(I)$, all unique used in refinement, final $R_{1}=0.1132, w R_{2}=0.1505$. Crystal data for 3: $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{PdS}_{2}, M=301.56$, monoclinic, space group $P 2_{1} / n$ (\#14), $a=8.357(1), b=5.9396(7), c=10.065(2) \AA, \beta=$ $106.321(2)^{\circ}, V=479.5(1) \AA^{3}, T=98 \mathrm{~K}, Z=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=2.851$ $\mathrm{mm}^{-1}, 8998$ measured reflections, 1125 unique, 1057 reflections with $I>$ $2 \sigma(I)$, all unique used in refinement, final $R_{1}=0.0191, w R_{2}=0.0390$. Crystal data for 4: $\mathrm{C}_{39} \mathrm{H}_{72} \mathrm{Cl}_{4} \mathrm{P}_{2} \mathrm{PdRuS} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}, M=1140.45$, triclinic, space group $P \overline{1}(\# 2), a=9.9306(4), b=12.5669(5), c=22.8075(9) \AA, \alpha$ $=87.842(1), \beta=89.414(1), \gamma=67.978(1)^{\circ}, V=2636.7(2) \AA^{3}, T=98$ $\mathrm{K}, Z=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.964 \mathrm{~mm}^{-1}, 54747$ measured reflections, 12240 unique, 10533 reflections with $I>2 \sigma(I)$, all unique used in refinement, final $R_{1}=0.0324, w R_{2}=0.0523$. CCDC 190234, 189804 and 186479. See http://www.rsc.org/suppdata/cc/b2/b207903h/ for crystallographic data in CIF or other electronic format.

1 Z. Wu, S. T. Nguyen, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1995, 117, 5503-5511.
2 R. G. Carlson, M. A. Gile, J. A. Heppert, M. H. Mason, D. R. Powell, D. V. Velde and J. M. Vilain, J. Am. Chem. Soc., 2002, 124, 1580-1581.
3 (a) J. C. Peters, A. L. Odom and C. C. Cummins, Chem. Commun., 1997, 1995-1996; (b) A. E. Enriquez, P. S. White and J. L. Templeton, J. Am. Chem. Soc., 2001, 123, 4992-5002; (c) J. B. Greco, J. C. Peters, T. A. Baker, W. M. Davis, C. C. Cummins and G. Wu, J. Am. Chem. Soc., 2001, 123, 5003-5013.
4 P. K. Byers, A. J. Canty, H. Jin, D. Kruis, B. A. Markies, J. Boersma and G. van Koten, Inorg. Synth., 1998, 32, 162-164.

5 Heppert and co-workers have reported the related complex $\left[\left(\mathrm{PCy}_{3}\right)_{2}{ }^{-}\right.$ $\left.(\mathrm{Cl})_{2} \mathrm{Ru}(\mu-\mathrm{CCuCl})\right]_{2}$ at a meeting. M. H. Mason, R. G. Carlson, M. A. Gile, J. Heppert, D. Powell and J. M. Vilain, ACS National Meeting Book of Abstracts, American Chemical Society, Orlando, FL, 2002, INOR 108.
6 J. M. Maher, R. P. Beatty and N. J. Cooper, Organometallics, 1985, 4, 1354-1361.
7 (a) J. Kress, M. Wesolek, J.-P. Le Ny and J. A. Osborn, J. Chem. Soc., Chem. Commun., 1981, 1039-1040; (b) R. Dantona, E. Schweda and J. Strähle, Z. Naturforsch., Teil B, 1984, 39, 733-735.
8 Y. Chen, W. Petz and G. Frenking, Organometallics, 2000, 19, 2698-2706.
9 (a) M. Etienne, P. S. White and J. L. Templeton, J. Am. Chem. Soc., 1991, 113, 2324-2325; (b) R. L. Miller, P. T. Wolczanski and A. L. Rheingold, J. Am. Chem. Soc., 1993, 115, 10422-10423; (c) S. L. Latesky and J. P. Selegue, J. Am. Chem. Soc., 1987, 109, 4731-4733; (d) W. Beck, W. Knauer and C. Robl, Angew. Chem., Int. Ed. Engl., 1990, 29, 318-320.
10 (a) P. González-Herrero, B. Weberndörfer, K. Ilg, J. Wolf and H. Werner, Angew. Chem., Int. Ed., 2000, 39, 3266-3269; (b) disorder problems in crystals of $\left(\mathrm{PPr}^{i}\right)_{2}(\mathrm{OPh}) \mathrm{Ru}=\mathrm{CPh}$ prevent an accurate $[\mathrm{Ru} \equiv \mathrm{C}]$ bond length determination in this molecule: J. N. Coalter, J. C. Bollinger, O. Eisenstein and K. G. Caulton, New J. Chem., 2000, 24, 925-927.
11 S.-T. Liu, T.-Y. Hsieh, G.-H. Lee and S.-M. Peng, Organometallics, 1998, 17, 993-995.
12 See references in T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18-29.

