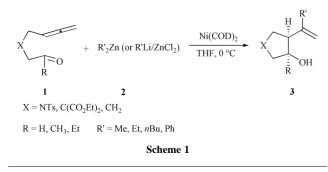
cis-Stereoselective nickel-catalyzed cyclization/alkylation and arylation reactions of allenyl-aldehydes and -ketones with organozinc reagents[†]

Suk-Ku Kang* and Seok-Keun Yoon

Department of Chemistry and Lab for Metal-Catalyzed Reactions, Sungkyunkwan University, Suwon 440-746, Korea

Received (in Cambridge, UK) 6th August 2002, Accepted 19th September 2002 First published as an Advance Article on the web 28th October 2002


Highly stereoselective alkylative and arylative cyclization reactions of allenvl-aldehvdes and -ketones with organozinc reagents occur efficiently in the presence of catalytic Ni(COD)₂ to afford *cis*-fused homoallylic cyclopentanols.

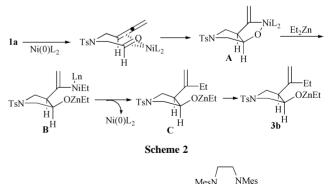
The transition metal-catalyzed cyclization reactions of unsaturated substrates is undoubtedly one of the most useful synthetic procedures for the preparation of cyclic compounds. The transition metal-catalyzed cyclization reactions of dienes, enynes, and diynes1-4 have been described. The titaniumcatalyzed reductive cyclization reactions of enals and enones to form cyclopentanols via oxametallacycles were investigated by Buchwald⁵ and Crowe.⁶ Recently Montgomery⁷ developed a chemoselective, nickel-catalyzed cyclization/alkylation reaction of ynals with organozinc reagents, which produces exomethylene-containing allylic-cyclopentanols, together with his extensive nickel-catalyzed three component processes.7b

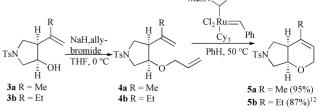
To the best of our knowledge cyclization reactions of allenylaldehydes and -ketones with organozinc reagents have not been described previously. We recently probed⁸ cyclization reactions of tethered allenyl-aldehydes and allenyl-ketones as precursors of 2-alkenyl substituted cyclopentanols. Here we wish to describe cis-stereoselective, alkenylcyclopentanol forming, nickel-catalyzed alkylative and arylative cyclization reactions of allenyl-aldehydes and -ketones with organozinc reagents (Scheme 1).9,10

Reaction of 1a with Ni(acac)₂ and Et₃B in THF at 0-25 °C did not yield any cyclized product. When Et₂Zn is used in place of Et₃B, nickel-catalyzed reaction of **1a** in THF at 0 °C gives rise to the cyclized product 3b in 68% yield. Importantly, 3b is formed as a sole product (90%) when Ni(COD)₂ is employed as the catalyst for the reaction of **1a** with Et_2Zn in THF at 0 °C.

We next explored the scope of this cyclization reaction. We observed that the allenyl-aldehyde 1a reacts with Me₂Zn in THF in the presence of Ni(COD)₂ (10 mol%) at 0 °C for 10 min to afford the cis-fused cyclopentanol 3a in 77% isolated yield (entry 1, Table 1). The cis-stereochemistry of 3a was assigned by using the 2D NOESY technique, coupled with molecular mechanics calculations (see ESI[†]). Nickel-catalyzed reaction of allenyl-aldehyde 1a with BuLi and ZnCl₂ affords the butyl adduct 3c (entry 3). In addition, the phenyl substituted homoallylic cyclopentanol 3d is generated in 83% yield (entry

⁺ Electronic supplementary information (ESI) available: typical procedures, NMR-data, and X-ray data. See http://www.rsc.org/suppdata/cc/b2/ b207620a/


4) by reaction of **1a** with PhLi/ZnCl₂ and Ni(COD)₂ at 0 °C in THF for 30 min. The stereochemistry of **3d** was unambiguously assigned by using X-ray crystallographic methods (see ESI[†]).


This method was extended to allenyl-ketones to introduce quaternary homoallylic centers. Allenyl-ketone 1b reacts with Me₂Zn to produce the tertiary-cyclopentanol 3e in 58% yield (entry 5). A strong NOE in the NMR between the methyl and ring junction protons suggests that 3e has cis-stereochemistry. Likewise, Et₂Zn and PhLi/ZnCl₂ are used to promote cyclization of 1b to furnish the respective cyclization products 3f (66%) and 3g (69%) (entries 6 and 7). The structure and stereochemistry of 3g were assigned by X-ray data (ESI[†]). It is notable that the higher branched ethyl ketone 1c, bigger than the methyl ketone, tolerated Et_2Zn to give **3h** (entry 8).

Information about the functional group compatibility of the process is gained from the reaction of malonate branched allenyl-aldehyde 1d with PhLi/ZnCl2, which yields cyclized product **3i** (60%) (entry 9). When allenyl-ketone **1e** is utilized as substrate, cyclizations with Me2Zn and PhLi/ZnCl2 unexpectedly generate the bicyclic lactones 3k and 3l, respectively, as sole products (entries 11 and 12). In these cases, the initially formed adducts undergo intramolecular lactonization between the tertiary alcohol and carboethoxy groups.

As a plausible mechanism, oxidative cyclization of the Ni(0) allenyl-aldehyde complex occurs to form the oxametallacycle A. Transmetallation between the organozinc reagent and oxametallacycle, involving nickel-oxygen bond cleavage, then gives the intermediate **B**, which upon reductive elimination affords the zinc alkoxide precursor of the cyclopentanol C (Scheme 2).

To elaborate the cyclized 2-alkenyl substituted cyclopentanols 3a and 3b, O-allylation followed by ring-closing metathesis using Grubbs' carbene metathesis catalyst11 generated the bicyclic heterocycles 5a and 5b, respectively (Scheme 3).

Scheme 3

www.rsc.org/chemcomm

chem **C**omm

10.1039/b207620a

BOI

Entry	Substrate	Reagent	Time	Product	Isolated yield (%)
1	TsN 1a	Me ₂ Zb 2a	10 min	TsN H H H H	77
2	1a	Et ₂ Zn 2b	10 min	H TsN H H OH H	90
3	1a	<i>n</i> BuLi/ZnCl ₂ 2c	1 h	TsN H 3c	61
4	1a	PhLi/ZnCl ₂ 2d	30 min	TsN Ph TsN H H H H OH	83
5	TsN To 1b	2a	30 min	T _{SN} <u>H</u> <u>H</u> OH 3e	58
6	1b	2b	10 min	TsNOH	66
7	1b	2d	10 min	3f ^H ^{TsN} ^H ^{DH} 3g	60
8	TsN Et Ic	2b	2 h	Jg TsN Et OH 3h	83
9	EtO ₂ C EtO ₂ C	2a	30 min	EtO_2C EtO_2C EtO_2C $\tilde{H}OH$ 3i	72
10	1d	2d	2 h	$\begin{array}{c} \overset{H}{\underset{EtO_2C}{\overset{H}{\underset{H}{\overset{E}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$	60
11	EtO_2C EtO_2C 1e	2a	30 min	EtO ₂ C	77
12	1e	2a	3 h	3k EtO ₂ C	67
13		2d	30 min	$\mathbf{3I} \xrightarrow{\mathbf{0'}}_{\substack{\mathbf{H} \\ \mathbf{F} \\ \mathbf{H} \\ H$	73
14	lf	2d	1 h	3m	75

Table 1 cis-Stereoselective nickel-catalyzed alkylative cyclization of

allenyl-aldehydes and -ketones with organozincs

efficient, Ni(COD)₂-catalyzed, alkylative and arylative cyclization of allenyl-aldehydes and allenyl-ketones with organozinc reagents to form *cis*-fused homoallylic cyclopentanols. The authors wish to acknowledge financial support by

In summary, a new procedure has been developed to promote

National Research Laboratory Project administrated by the Ministry of Science and Technology, KOSEF-CMDS. We thank Professor Yoongho Lim (Konkuk University) for performing NMR studies. S.-K. Yoon acknowledges financial support by the BK21 program.

Notes and references

- For reviews see: (a) I. Ojima, M. Tzamarioudaki, Z. Li and R. J. Dobovan, *Chem. Rev.*, 1996, **96**, 635–662; (b) M. Lautens, W. Klute and W. Tam, *Chem. Rev.*, 1996, **96**, 49–92.
- 2 For recent studies of late transition metal-catalyzed cyclization of dienes: (a) Y. Yamamoto, N. Ohkoshi, M. Kameda and K. Itoh, J. Org. Chem., 1996, 64, 2178–2179; (b) N. S. Perch and R. A. Widenhoefer, J. Am. Chem. Soc., 1999, 121, 6960–6961; (c) R. A. Widenhoefer and M. A. Decal, J. Am. Chem. Soc., 1998, 120, 6960–6961; (d) B. Radetich and T. V. RajanBabu, J. Am. Chem. Soc., 1998, 120, 8007–8008.
- 3 For recent studies of late transition metal-catalyzed cyclization of enynes: (a) I. Ojima, J. Zhu, E. S. Vidal and D. F. Kass, J. Am. Chem. Soc., 1998, **120**, 6690–6697; (b) B. M. Trost, C. D. Haffner, D. J. Jebaratnam and F. Rise, J. Am. Chem. Soc., 1999, **121**, 4268–4278; (c) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 2000, **122**, 714–715; (d) J. LePaih, D. C. Rodrigues, S. Derien and P. H. Dixneuf, Synlett, 2000, 95–97; (e) M. Mori, Y. Kozawa, M. Nishida, M. Kanamaru, K. Onozuka and M. Takimoto, Org. Lett., 2000, **2**, 3245–3247; (f) S. Shin and T. V. RajanBabu, J. Am. Chem. Soc., 2001, **123**, 8416–8417.
- For recent studies of late transition metal-catalyzed cyclization of diynes: (a) T. Muraoka, I. Matsuda and K. Itoh, *Tetrahedron Lett.*, 1998, **39**, 7325–7328; (b) I. Ojima and S.-Y. Lee, J. Am. Chem. Soc, 2000, **122**, 2385; (c) M. Lautens, N. D. Smith and D. Ostrovsky, J. Org. Chem., 1997, **62**, 8970–8971; (d) S. Onozawa, Y. Hatanaka and M. Tanaka, Chem. Commun., 1997, 1229–1230; (e) S. Greau, B. Radetich and T. V. RajanBabu, J. Am. Chem. Soc., 2000, **122**, 8579–8580.
- 5 N. M. Kablaoui and S. L. Buchwald, J. Am. Chem. Soc., 1995, 117, 6785–6786.
- 6 W. E. Crowe and M. J. Rachita, J. Am. Chem. Soc., 1995, 117, 6787–6788.
- 7 (a) E. Oblinger and J. Montgomery, J. Am. Chem. Soc., 1997, 119, 9065–9066; (b) J. Montgomery, Acc. Chem. Res., 2000, 33, 467–473.
- 8 S.-K. Kang, Y.-H. Ha, B.-S. Ko, Y. Lim and J. Jung, *Angew. Chem., Int. Ed.*, 2002, **41**, 343–345.
- 9 The nickel-catalyzed intramolecular reductive cyclization of 1,3-dienes and carbonyls has been reported by Mori *et al.* See: (a) Y. Sato, M. Takimoto, K. Hayashi, T. Katsuhara, K. Takagi and M. Mori, *J. Am. Chem. Soc.*, 1994, **116**, 9771–9772; (b) Y. Sato, M. Takimoto and M. Mori, *Tetrahedron Lett.*, 1996, **37**, 887–890.
- 10 The nickel-catalyzed intramolecular reductive homoallylic cyclization of ω-dienyl aldehydes in the presence of Et₃B or Et₂Zn was developed by Tamaru *et al.* See: (*a*) K. Shibata, M. Kimura, M. Shimizu and Y. Tamaru, *Org. Lett.*, 2001, **3**, 2181–2183and reference therein (*b*) A. Ezoe, M. Kimura, T. Inoue, M. Mori and Y. Tamaru, *Angew. Chem., Int. Ed.*, 2002, **41**, 2784–2786; (*c*) Recent Ni-catalyzed homoallylation: T.-P. Loh, H.-Y. Song and Y. Zhou, *Org. Lett.*, 2002, 2715–2717.
- 11 M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett., 1999, 953–956.
- 12 The yield based on the recovered starting material (80% conversion).