N-Substituent effect on the cis-trans geometry of nine-membered lactams

Shinji Yamada* and Akie Homma
Department of Chemistry, Faculty of Science, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.
E-mail: yamada@cc.ocha.ac.jp; Fax: 81-3-5978-5715; Tel: 81-3-5978-5349

Received (in Cambridge, UK) 13th August 2002, Accepted 23rd September 2002
First published as an Advance Article on the web 7th October 2002

The cis-trans geometry of a nine-membered lactam significantly depends on the N-substituents; N-acyl-1-aza-2-cyclononanones (1a-c) exist as cis form; in contrast, N -Z-1-aza-2-cyclononanone (1d) exists as trans form both in the crystal and in solution.

The relationship between the cis-trans geometry of a mediumsized lactam and its bioactivity has received considerable attention. For instance, the cis form of indolactam V, an active fragment of teleocidine possessing a nine-membered lactam ring, is considered to have a much higher tumor-promoting activity than the trans form. ${ }^{1}$ The twelve-membered cyclic depsipeptide hapalosin, ${ }^{2}$ which exhibits a multidrug resistance reversing activity, exists as a 2.3:1 mixture of cis and trans isomers in solution, and the cis form is considered to be an active conformer. ${ }^{3}$ Therefore, elucidation of the relationship between the structure and the conformation of lactams will attract significant interest among researchers.
Continuing our research program on the conformational studies of various N-acylamides, ${ }^{4,5}$ we focused on the geometries of N-substituted nine-membered lactams, because the rotational barrier of nine-membered lactams is lower than that of lactams of other sizes^{6} due to their significant steric strain, ${ }^{7}$ and, therefore, the N-substituent seemed to affect the geometry of the lactam ring. Here we report that the cis-trans geometry significantly depends on the N -substituent of the amide moiety.
We prepared N-acetyl- (1a), ${ }^{8} \mathrm{~N}$-isobutylyl- (1b), N -pivaloyl(1c) and N-benzyloxycarbonyl- (1d) 1-aza-2-cyclononanones by acylation of caplyrolactam with acyl chlorides or benzyloxycarbonyl chloride. To elucidate the N-substituent effect on their geometries, X-ray analyses of 1a-d \dagger were carried out. The most remarkable geometrical feature is that the amide linkage of N -Z lactam 1d is trans, while all N -acyl derivatives 1a-c have a cis amide linkage in the lactam ring with a similar conformation (Fig. 1). Table 1 lists the Winkler-Dunitz parameters ${ }^{9} \tau_{1}, \tau_{2}$ and χ_{N}, representing twist angles of the exocyclic and endocyclic amide linkages, and the pyramidalization of the nitrogen atom, respectively, and the $\mathrm{N}-\mathrm{C} 1$ and $\mathrm{N}-\mathrm{C} 2$ bond lengths. As the steric bulkiness of the acyl group increases, the τ_{1} value increases from 10.2 to 24.2°. This can be attributable to the steric repulsion of the acyl group against the lactam ring. A similar substituent effect was observed in several

1

3: $R=H$
4: $R=M e$

5

6

Fig. 1 ORTEP drawings for $\mathbf{1 a}$ (a), 1b (b), 1c (c) and 1d (d) at the 50% probability level.
series of N-acylamides. ${ }^{10}$ On the other hand, the τ_{2} values are much larger than τ_{1} and lie in the narrower range of 27.4 to 35.4° regardless of the steric bulkiness of the N-substituent.
Compared with the geometry of non-substituted ninemembered lactam 3, which is trans in the crystalline state due to intermolecular hydrogen bonding ${ }^{11}$ and is a $4: 1$ equilibrium mixture of cis and trans isomers in $\mathrm{CHCl}_{3},{ }^{12} \mathbf{1 a}$-d have much larger twist angles τ_{2}, longer $\mathrm{N}-\mathrm{C} 2$ bonds and smaller χ_{N} values (Table 1). These results clearly show that the N-acyl and N-Z substituents are responsible for the ring conformation; they reduce the double bond character of the endocyclic amide linkage, which results in lengthening of the $\mathrm{N}-\mathrm{C} 2$ bond and twisting of the amide bond so as to diminish the ring strain originated from the planarity of the amide linkage. The much larger τ_{1} than τ_{2} described above would be the result of the relaxation of the ring strain triggered by the the N-substitution. The relatively smaller χ_{N} values would be due to the delocalization of the nitrogen lone pair electrons with the two carbonyl groups, which allows the N atom to retain sp^{2} character similar to the observations in several N-acylamides. ${ }^{13}$ The largest τ_{2} and the longest $\mathrm{N}-\mathrm{C} 2$ bond of $\mathbf{1 d}$ among these lactams are ascribed to the much strained trans amide linkage in the nine-membered ring. The individual structural optimization by AM1 calculations predicted cis for 1a-c and trans for 1d

Table 1 Winkler-Dunitz parameters and the amide bond lengths for 1a-d and 3

	$\tau_{1} a /{ }^{\circ}$	$\tau_{2} a /{ }^{\circ}$	$\chi_{\mathrm{N}} /{ }^{\circ}$	$\mathrm{N}-\mathrm{C} 1 / \AA$	$\mathrm{N}-\mathrm{C} 2 / \AA$
$\mathbf{1 a}$	$10.2(7.0)$	$28.5(20.8)$	1.7	$1.403(2)$	$1.410(2)$
1b	$13.5(15.5)$	$27.4(26.4)$	11.9	$1.408(2)$	$1.410(2)$
1c	$24.2(23.9)$	$32.3(30.5)$	15.8	$1.407(2)$	$1.400(2)$
1d	$15.3(9.0)$	$35.4(38.9)$	9.2	$1.384(2)$	$1.418(2)$
3	-	17.1	23.1	-	$1.334(3)$

${ }^{a}$ Twist angles obtained by AM1 calculations are indicated in parentheses.

Table $2{ }^{13} \mathrm{C}$ NMR chemical shifts for carbonyl groups of $\mathbf{1 a - d}(\mathrm{ppm})$ and their $\Delta \delta$ values ${ }^{a}$

	δ_{1}	δ_{2}	$\Delta \delta_{1}{ }^{b}$	$\Delta \delta_{2}{ }^{c}$
$\mathbf{1 a}$	173.5	180.0	2.9	4.3
1b	181.3	180.1	4.3	4.4
1c	188.4	180.4	10.9	4.7
1d	154.4	182.2	-1.8	6.5

${ }^{a} 100 \mathrm{MHz}$ in $\mathrm{CDCl}_{3 .}{ }^{b} \delta$ values for $\mathbf{2 a - d}$ are as follows: $\delta(\mathbf{2 a}) ; 170.6, \delta(\mathbf{2 b}) ;$ $177.0, \delta(2 \mathbf{c}) ; 177.5, \delta(2 \mathbf{d}) ; 156.2 .^{c} \delta$ value for $\mathbf{4}$ is 175.7 .
with very close geometries to those of the X-ray structures (Table 1). ${ }^{14}$
The geometries of $\mathbf{1 a - d}$ in solution were studied by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopies. The NMR spectra showed that they are single isomers about the amide linkage. Table 2 lists the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the carbonyl carbons for 1a-d and their $\Delta \delta$ values calculated using 2 and $\mathbf{4}$ as standards. As the steric bulkiness of the acyl group increases, both $\Delta \delta_{1}$ and $\Delta \delta_{2}$ values increase. Rough correlation was also observed between $\Delta \delta_{1}$ and τ_{1}, and $\Delta \delta_{2}$ and τ_{2}, indicating similarity in the geometry in solution and in the solid state. NOE experiments clarified the preference of the cis-trans geometry in solution. For 1a-c, NOEs were observed between the methylene protons next to the ring carbonyl and the NCH_{2} protons, ${ }^{15}$ whereas no such NOE was observed in 1d. This means that the X-ray geometries of 1a-c are retained in CDCl_{3} solution.

These remarkable conformational differences arising whether they have an N-acyl group or an N-Z group may be mainly attributable to the differences in the electronic properties of the N-substituents. The electronic repulsion between the N benzyloxycarbonyl group and the lactam carbonyl in the cis1d(II) would be much larger than those in the trans form III due to the close contact of the oxygen lone pairs, whereas such repulsion in the cis-Ia-c(I) of N-acyl compounds $\mathbf{1 a - c}$ is less important (Fig. 2). As a result, 1d would prefer trans to avoid the electronic repulsion and 1a-c prefer cis similar to nonsubstituted lactam 3. Since no steric effect of the N-acyl groups on the cis-trans geometries was observed for a series of N acyllactams 1a-c, the steric bulkiness of the $N-Z$ group would not be a major factor in the trans preference of 6 .
Holmes and coworkers have reported that eight-membered N-Z lactam 6 has a significantly twisted trans amide linkage. ${ }^{16}$ The trans preference of 6 may not be due to the $N-Z$ substituent effect, since NOE experiments for N-Z-1-aza-2-cyclooctanone (5) in CDCl_{3} solution predicted it to have a cis amide linkage; the two substituents around the amide functionality, the double bond in the ring or a crystal packing effect may play an important role in the trans preference.

Fig. 2 Schematic geometries around the amide moieties for cis-la-c (I), for cis-1d (II) and for trans-1d (III).

In summary, we have shown for the first time that the cistrans geometry of a nine-membered lactam significantly depends on the N-substituents. N-acyl-1-aza-2-cyclononanones (1a-c) exist as cis form; in contrast, N-Z-1-aza-2-cyclononanone (1d) exists as trans form both in the crystal and in solution. The significant geometrical differences may perhaps be due to the electronic effects of the N-substituents. These results would provide insights into the relationship between the structure and the geometry of medium-sized lactams.

This work was partly supported by a Grant-in-Aid for Scientific Research (10640574) from Japan Society for the Promotion of Science and Research (13650901) from Ministry of Education, Science, and Culture, Japan.

Notes and references

\dagger Crystal data: compound 1a: $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}, M=183.25$, monoclinic, $P 2_{1} / n$, $\mu=0.692 \mathrm{~mm}^{-1}, a=11.988(2), b=7.2178(14), c=11.446(2) \AA, \beta=$ $99.370(12)^{\circ}, V=977.1(3) \AA^{3}, T=230 \mathrm{~K}, \mathrm{Z}=4, D_{\mathrm{c}}=1.246 \mathrm{~g} \mathrm{~cm}^{-3}$, A total of 1870 reflections were collected and 1781 are unique ($R_{\mathrm{int}}=0.0344$). $R 1$ and $w R 2$ are $0.0409[I>2 \sigma(I)]$ and 0.1681 (all data), respectively.

Compound 1b: $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{2}, M=211.30$, monoclinic, $P 2_{1} / n, \mu=0.621$ $\mathrm{mm}^{-1}, a=10.068(4), b=23.305(2), c=5.1428(13) \AA, \beta=91.86(3)^{\circ}$, $V=1206.0(6) \AA^{3}, T=230 \mathrm{~K}, \mathrm{Z}=4, D_{\mathrm{c}}=1.164 \mathrm{~g} \mathrm{~cm}^{-3}$, A total of 6101 reflections were collected and 2190 are unique ($R_{\text {int }}=0.0741$). $R 1$ and $w R 2$ are $0.0460[I>2 \sigma(I)]$ and 0.1776 (all data), respectively.

Compound 1c: $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{2}, M=225.32$, monoclinic, $P 2_{1} / n, \mu=0.598$ $\mathrm{mm}^{-1}, a=10.462(2), b=22.892(5), c=5.5006(9) \mathrm{A}, \beta=94.201(14)^{\circ}$, $V=1313.8(4) \AA^{3}, T=293 \mathrm{~K}, \mathrm{Z}=4, D_{\mathrm{c}}=1.139 \mathrm{~g} \mathrm{~cm}^{-3}$, A total of 3322 reflections were collected and 2395 are unique $\left(R_{\mathrm{int}}=0.0178\right) . R 1$ and $w R 2$ are $0.0435[I>2 \sigma(I)]$ and 0.1849 (all data), respectively.

Compound 1d: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}, M=275.34$, triclinic, $P \overline{1}, \mu=0.701 \mathrm{~mm}^{-1}$, $a=8.2108(13), b=12.229(2), c=7.602(2) \AA, \alpha=96.600(14), \beta=$ 99.01(2), $\gamma=103.634(11)^{\circ}, V=723.4(2) \AA^{3}, T=230 \mathrm{~K}, \mathrm{Z}=2, D_{\mathrm{c}}=$ $1.264 \mathrm{~g} \mathrm{~cm}^{-3}$, A total of 4655 reflections were collected and 2627 are unique $\left(R_{\mathrm{int}}=0.0601\right) . R 1$ and $w R 2$ are $0.0432[I>2 \sigma(I)]$ and 0.2064 (all data), respectively.

The data were collected on a Rigaku AFC7R diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA)$. The structures were solved by direct methods with SHELXS-86 and refined by full-matrix least-squares on F^{2} using SHELXL-93. CCDC reference numbers 190921 (1a), 190922 (1b), 190923 (1c) and 190924 (1d). See http://www.rsc.org/suppdata/cc/b2/b207925a/ for crystallographic data in CIF or other electronic format.

1 Y. Endo, M. Ohno, M. Hirano, A. Itai and K. Shudo, J. Am. Chem. Soc., 1996, 118, 1841; K. Irie, T. Isaka, Y. Iwata, Y. Yanai, Y. Nakamura, F. Koizumi, H. Ohigashi, P. A. Wender, Y. Satomi and H. Nishino, J. Am. Chem. Soc., 1996, 118, 10733.
2 T. Okuno, K. Ohmori, S. Nishiyama, S. Yamamura, K. Nakamura, K. N. Houk and K. Okamoto, Tetrahedron, 1996, 52, 14723; T. Q. Dinh, X. Du and R. W. Armstrong, J. Org. Chem., 1996, 61, 6606.
3 S. Nishiyama, J. Synth. Org. Chem. Jpn., 2001, 59, 938.
4 E. Noe and M. Raban, J. Am. Chem. Soc., 1973, 95, 6118; W. E. Steinmetz, J. Am. Chem. Soc., 1973, 95, 2777; L. Radom and N. V. Riggs, Aust. J. Chem., 1980, 33, 1635.
5 S. Yamada, Angew. Chem., Int. Ed. Engl., 1993, 32, 1083; S. Yamada, N. Nunami and K. Hori, Chem. Lett., 1998, 451; S. Yamada and K. Matsuda, Chem. Lett., 2001, 750.
6 C. Y. S. Chen and C. A. Swenson, J. Phys. Chem., 1969, 73, 2999; K. L. Williamson and J. D. Roberts, J. Am. Chem. Soc., 1976, 98, 5082.

7 J. Dunitz and F. K. Winkler, Acta Crystallogr., Sect. B, 1975, 31, 251.

8 A. K. Chaterjee, J. Roda, J. Kralicek and P. Jaroslav, Sb. Vys. Sk. Chem.Technol. Praze, Polym.: Chem., Vlastnosti Zpracov., 1985, S12, 25.
9 F. K. Winkler and J. D. Dunitz, J. Mol. Biol., 1971, 59, 169.
10 S. Yamada, J. Org. Chem., 1996, 61, 941; K. Kondo, H. Fujita, T. Suzuki and Y. Murakami, Tetrahedron Lett., 1999, 40, 5577; P. A. Duspara, C. F. Matta, S. I. Jenkins and P. H. M. Harrison, Org. Lett., 2001, 3, 495.
11 F. K. Winkler and J. D. Dunitz, Acta Crystallogr., Sect. B, 1975, 31, 276.

12 J. Smolikova, M. Havel, S. Vasickova, A. Vitek, M. Svoboda and K. Blaha, Collect. Czech. Chem. Commun., 1974, 39, 293.
13 S. Yamada, in The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, ed. A. Greenberg, C. M. Breneman and J. F. Liebman, John Wiley \& Sons, Inc., New York, 2000, ch. 8. p. 215.
14 AM1 calculations were performed by PC SPARTAN pro. The energy of the optimized trans conformer for $\mathbf{1 d}$ is $1.66 \mathrm{kcal} \mathrm{mol}^{-1}$ lower than that of the cis conformer.
15 Irradiation at the $\mathrm{CH}_{2} \mathrm{CO}$ protons resulted in NOE at the $\mathrm{CH}_{2} \mathrm{~N}$ protons: 2% for $1 \mathbf{a}, 4 \%$ for $\mathbf{1 b}$ and 3% for 1c.
16 P. A. Evans, A. B. Holmes, I. Collins, P. R. Raithby and K. Russell, J. Chem. Soc., Chem. Commun., 1995, 2325.

