A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ -Al₂O₃

Xiaowei Chen, Tao Zhang,* Pinliang Ying, Mingyuan Zheng, Weicheng Wu, Liangen Xia, Tao Li, Xiaodong Wang and Can Li*

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P.O. Box 110, Dalian 116023, China. E-mail: taozhang@dicp.ac.cn. E-mail: canli@dicp.ac.cn

Received (in Cambridge, UK) 16th October 2001, Accepted 17th December 2001 First published as an Advance Article on the web 16th January 2002

An alumina-supported Mo_2C catalyst is found to be as active as a conventionally used Ir/γ -Al₂O₃ catalyst for catalytic decomposition of hydrazine tested in a monopropellant thruster.

The catalytic decomposition of hydrazine has been of interest for many years since this process has been successfully used in a monopropellant thruster to control and adjust the orbits and altitudes of spacecrafts. The traditionally used catalyst for hydrazine decomposition is a 20–40 wt% Ir/γ -Al₂O₃ catalyst.¹⁻⁴ The Ir-based catalyst is very expensive because iridium is a rare and noble metal. Therefore it is highly desirable to develop an inexpensive, active, stable and readily available catalyst for hydrazine decomposition.

Transition metal carbides and nitrides have received a great deal of attention because of their excellent catalytic behavior resembling group VIII metals in a number of reactions,^{5,6} such as hydrogenolysis, hydrogenation, hydrotreating (hydrode-nitrogenation and hydrodesulfurization), NH₃ synthesis and decomposition. Pure phases of γ -Mo₂N, W₂N, NbN and W₂C have been tested as possible substitutes for the Ir/ γ -Al₂O₃ catalyst for hydrazine decomposition in space technology.^{7,8} Their behaviors were similar to or inferior to that of the Ir/ γ -Al₂O₃ catalyst.

Until now, no studies on the catalytic performance of molybdenum carbide for hydrazine decomposition have been reported. Supported Mo_2C on alumina catalysts were prepared in order to obtain highly dispersed molybdenum carbide on the alumina with a high surface area. Compared with the bulk molybdenum carbide, alumina-supported molybdenum carbide has some advantages, such as relatively low Mo loading, large surface area, strong mechanical strength and easy molding. In this work, for the first time it has been found that the supported Mo_2C catalysts are very active for hydrazine decomposition.

The theoretical monolayer capacity of the MoO_3/γ -Al₂O₃ sample is 0.12 g MoO₃/100 m² of γ -Al₂O₃ surface.⁹ The theoretical monolayer coverage of MoO₃ on γ -Al₂O₃ with 198 $m^2 g^{-1}$ corresponds to a loading of *ca*. 12.9 wt% Mo. The MoO_3/γ -Al₂O₃ precursor (Mo in the catalyst is 12.9 wt%) was first prepared by the incipient wetness method using an aqueous $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ solution and γ -Al₂O₃ (S_{BET} = 198 m² g^{-1} , 20–30 mesh), followed by drying at 393 K for 12 h and calcination at 773 K for 4 h. The Mo₂N/y-Al₂O₃ precursor was prepared by temperature-programmed reaction (TPR) of MoO₃/ γ -Al₂O₃ with ammonia. The temperature was increased from room temperature to 573 K in 1 h; then from 573 K to 973 K at a rate of 1 K min⁻¹; and then kept at 973 K for 2 h. The nitrided sample was cooled down to room temperature in flowing ammonia and passivated in a mixture of 1% O2/N2 so as to avoid the violent oxidation of the Mo₂N/_γ-Al₂O₃ precursor. Supported molybdenum carbides with the same Mo loading but different structures were prepared by TPR between the precursors (Mo₂N/γ-Al₂O₃ or MoO₃/γ-Al₂O₃) and 20% CH₄/ H_2 (v/v). A four-stage heating ramp was used: the temperature was first heated from room temperature to 573 K in 0.5 h; then to 823 K at a rate of 0.5 K min⁻¹; further from 823 to 973 K at a rate of 1 K min⁻¹; and finally maintained at 973 K for 1 h. The

 $\alpha-Mo_2C/\gamma-Al_2O_3$ catalyst with a face-centered cubic structure (fcc) was prepared by carburizing the produced $Mo_2N/\gamma-Al_2O_3$, whereas the $\beta-Mo_2C/\gamma-Al_2O_3$ catalyst with a hexagonal-close packed structure (hcp) was synthesized from $MoO_3/\gamma-Al_2O_3$ directly.^{10-13} Both of the supported $Mo_2C/\gamma-Al_2O_3$ catalysts with different structures were passivated by $1\%~O_2/N_2$ for 10 h to form a protective oxide layer on the surface.

The catalytic activity of hydrazine decomposition was evaluated in an experimental apparatus similar to that used by Tian et al.14 and Rodrigues.7,8 A monopropellant thruster of 10 Newtons containing a catalyst bed (40 mm long with a diameter of 16 mm), was placed in a vacuum chamber (evacuated to 0.5 Torr). In this thruster the theoretical chamber pressure (P_c) produced by hydrazine decomposition was ca. 1.02-1.05 MPa (at flow rate of hydrazine of 4.41 g s⁻¹). Approximately 9 g of catalyst was used for each batch. The hydrazine injection pressure (P_i) was controlled by pressurized N₂ and was kept constant (1.5 MPa) during the hydrazine decomposition to obtain an almost constant hydrazine feeding rate. When the electromagnetic valve was opened, the hydrazine was pressed into the catalytic chamber by N₂. Almost at the same time, the hydrazine was vaporized and decomposed by the catalyst bed, generating the gases of nitrogen, hydrogen and ammonia. The initial temperature in the catalyst bed was 373 K. The continuous feeding of hydrazine lasted 30 s, and then the catalyst bed was allowed to cool to 373 K before the next 30 s test began. Chamber pressure (P_c) , catalyst bed temperature (T_c) and ignition delay (t_0) were recorded with a frequency of 1 kHz and calculated automatically by computer. The performance of hydrazine decomposition over the Mo_2C/γ -Al₂O₃ catalysts with different structures and commercial 31.6 wt% Ir/y-Al2O3 catalysts were compared.

The Mo₂C/ γ -Al₂O₃ catalysts (12.9 wt% Mo) prepared by different methods both show broad XRD peaks which make it difficult to distinguish the Mo₂C phase from γ -Al₂O₃. However, the bulk materials synthesized under similar preparation conditions give strong and sharp XRD peaks due to α -Mo₂C (fcc) and β -Mo₂C (hcp) phases. These results suggest that the α -Mo₂C and β -Mo₂C particles are well dispersed on γ -Al₂O₃ under these preparation conditions.

Hydrazine decomposition is a volume expansion and exothermic reaction. When hydrazine was fed into the thruster and contacted with the catalyst, it was decomposed immediately. Consequently, the chamber pressure (P_c) increases quickly, and then reaches a maximum value. Fig. 1 compares the catalytic behaviors of the commercial 31.6 wt% Ir/γ -Al₂O₃, α -Mo₂C/ γ -Al₂O₃ and β -Mo₂C/ γ -Al₂O₃ catalysts in the first 30 s continuous feeding of hydrazine. It can be seen that $P_{\rm c}$ attains a steady value within a short time. The higher the catalyst activity, the more rapid the increase of the chamber pressure. These results indicate that both the α -Mo₂C/ γ -Al₂O₃ and β -Mo₂C/ γ -Al₂O₃ catalysts are effective for the catalytic decomposition of hydrazine. Furthermore, there is no obvious difference between the stable-state chamber pressures of the Mo₂C/y-Al₂O₃ catalysts with different structures and the Ir/y-Al2O3 catalyst under the same reaction conditions. The steady $P_{\rm c}$ produced by hydrazine decomposition is close to or greater than the

Fig. 1 Comparison of catalytic performance of hydrazine decomposition over (a) Ir/ γ -Al₂O₃, (b) α -Mo₂C/ γ -Al₂O₃ (fcc) and (c) β -Mo₂C/ γ -Al₂O₃ (hcp) catalysts with a continuous feeding of hydrazine for 30 s in a thruster of 10 N. The initial temperature of the catalyst bed was 373 K.

theoretical P_c . The activities of supported molybdenum carbide catalysts for hydrazine decomposition are comparable to that of the Ir/ γ -Al₂O₃ catalyst.

Table 1 summarizes the experimental results of steady chamber pressure (P_c) , catalyst bed temperature (T_c) and ignition delay (t_0) . The parameter t_0 is the time when the pressure of the chamber reaches 10% of the stable-state pressure of the chamber. It reflects the initial activity of the catalyst and

Table 1 Performance of the catalysts with a continuous feeding of hydrazine for 30 s in a thruster of 10 N. The initial temperature in the catalyst bed was 373 K

Catalyst	Hydrazine flow rate/g s ⁻¹	Average t ₀ /ms	T _c /K	P₅/ MPa	
α -Mo ₂ C/ γ -Al ₂ O ₃ (fcc)	4.70	56	1171	1.08	
β -Mo ₂ C/ γ -Al ₂ O ₃ (hcp)	4.42	46	1123	1.04	
Ir/ γ -Al ₂ O ₃	4.63	28	1071	1.07	

depends mainly upon the intrinsic activity of the catalyst at the initial time. The smaller the values of t_0 , the higher the initial activity of the catalyst. The t_0 value of the Ir/ γ -Al₂O₃ catalyst is the shortest with an average of 28 ms, whereas the t_0 values of the α -Mo₂C/ γ -Al₂O₃ and β -Mo₂C/ γ -Al₂O₃ catalysts are longer than that of the Ir-based catalyst with the average of 56 and 46 ms, respectively. The results indicate that the initial activity of the Ir/ γ -Al₂O₃ catalyst is higher than that of the Mo₂C/ γ -Al₂O₃ catalysts, but is within the same order of magnitude. The difference in the t_0 value of these two Mo₂C/ γ -Al₂O₃ catalysts of the same chemical composition is small and is probably due to their different phases.

The chamber pressure (P_c) and catalyst bed temperature (T_c) at the steady states remains almost unchanged for six tests of the 30 s continuous feeding of hydrazine. This indicates that these two Mo₂C/ γ -Al₂O₃ catalysts are stable for hydrazine decomposition.

The ammonia component of the resultant mixture produced by hydrazine decomposition may further dissociate into H₂ and N₂ at elevated temperatures. The ammonia decomposition is endothermic and the hydrazine decomposition is exothermic. Hence the catalyst bed temperature (T_c) is the parameter of the ammonia and hydrazine conversion. As shown in Fig. 1, T_c increases when hydrazine decomposes, and rises to a stable level finally. The T_c of the Ir/ γ -Al₂O₃ catalyst is lower than those of the Mo₂C/ γ -Al₂O₃ catalysts with different phases. The results suggest that the ammonia conversion over the Ir/ γ -Al₂O₃ catalyst is higher than that of the Mo₂C/ γ -Al₂O₃ catalysts.

In conclusion, alumina-supported molybdenum carbides have been applied to hydrazine decomposition for the first time. The Mo_2C/γ -Al₂O₃ catalysts exhibit excellent catalytic performances for hydrazine decomposition. They show comparable activities to that of the Ir/γ -Al₂O₃ catalyst. Aluminasupported molybdenum carbide catalysts are therefore promising substitutes for the Ir-based catalyst for hydrazine decomposition in space technology because of their low cost, high activity, strong mechanical strength and easy preparation.

Notes and references

- 1 W. E. Armstrong, L. B. Ryland and H. H. Voge, US Pat., 4,124,538, 1978.
- 2 J. P. Contour and G. Pannetier, J. Catal., 1972, 24, 434.
- 3 S. Mary, C. Kappenstein, S. Balcon, S. Rossignol and E. Gengembre, *Appl. Catal.*, *A: General*, 1999, **182**, 317.
- 4 S. Balcon, S. Mary, C. Kappenstein and E. Gengembre, *Appl. Catal., A: General*, 2000, **196**, 179.
- 5 S. T. Oyama, Catal. Today, 1992, 15, 179.
- 6 J.-G. Choi, J. R. Brenner, C. W. Colling, B. G. Demczyk, J. L. Dunning and L. T. Thompson, *Catal. Today*, 1992, 15, 201.
- 7 R. Brayner, G. Djéga-Mariadassou, G. M. Cruz and J. A. J. Rodrigues, *Catal. Today*, 2000, 57, 225.
- 8 J. A. J. Rodrigues, G. M. Cruz, G. Bugli, M. Boudart and G. Djéga-Mariadassou, *Catal. Lett.*, 1997, 45, 1.
- 9 Y. Xie and Y. Tang, Adv. Catal., 1990, 37, 1.
- 10 J. S. Lee, K. H. Lee and J. Y. Lee, *J. Phys. Chem.*, 1992, **96**, 362; J. S. Lee, M. H. Yeom, K. Y. Park, I.-S. Nam, J. S. Chung, Y. G. Kim and S. H. Moon, *J. Catal.*, 1991, **128**, 126.
- 11 M. Nagai, K. Oshikawa, T. Kurakami, T. Miyao and S. Omi, J. Catal., 1998, **180**, 14; M. Nagai, T. Kurakami and S. Omi, *Catal. Today*, 1998, **45**, 235.
- 12 P. A. Aegerter, W. W. C. Quigley, G. J. Simpson, D. D. Ziegler, J. W. Logan, K. R. McCrea, S. Glazier and M. E. Bussell, *J. Catal.*, 1996, 164, 109.
- 13 A. J. Brungs, A. P. E. York, J. B. Claridge, C. Márquez-Alvarez and M. L. H. Green, *Catal. Lett.*, 2000, **70**, 117.
- 14 H. Tian, T. Zhang, X. Sun, D. Liang and L. Lin, *Appl. Catal.*, A: General, 2001, **210**, 55.