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The asymmetric synthesis of (1R,2S,3R)-3-methyl-2-amino-
cyclopentane carboxylic acid has been achieved via kinetic
resolution of racemic tert-butyl 3-methyl-cyclopentene-
1-carboxylate with homochiral lithium (S)-N-benzyl-N-a-
methylbenzylamide.

The cyclic a-alkyl-b-amino acid (1R,2S)-2-aminocyclopentane
carboxylic acid (cis-pentacin) has aroused much commercial
and synthetic interest as a result of its potent antifungal
activity.1 The synthesis and screening of a number of deriva-
tives and analogues of cis-pentacin has demonstrated that the
saturated 5-membered ring backbone is essential for biological
activity, as is the (1R,2S)-absolute configuration.2 We have
previously shown that the conjugate addition of homochiral
lithium amides derived from a-methylbenzylamine to a,b-
unsaturated esters represents a versatile methodology for the
asymmetric synthesis of b-amino acid derivatives,3 as demon-
strated for the preparation of homochiral cis-pentacin.4 In order
to extend this methodology to the asymmetric synthesis of the
homochiral 3-methyl analogue, the simplest route would be to
employ the unprecedented kinetic resolution of racemic tert-
butyl 3-methyl cyclopentene-1-carboxylate 1 with homochiral
lithium amide 2 (Fig. 1).

The required conjugate acceptor for this approach was readily
prepared on a multigram scale from adipoyl chloride. Esterifica-
tion5 and subsequent Dieckmann cyclisation6 afforded b-keto
ester 3, which underwent regioselective g-methylation to
furnish 4 as a 5+2 mixture of diastereoisomers. Sequential
reduction, tosylation and elimination furnished (±)-tert-butyl
3-methyl cyclopentene-1-carboxylate 1 (Scheme 1).

Initially the mutual kinetic resolution7 of the racemic
acceptor (±)-1 and (±)-lithium N-benzyl-N-a-methylbenzyla-
mide 2 was performed to assay the level of enantiorecognition
between the two reactants. This racemic/racemic strategy

allows a rapid evaluation of the stereoselectivity factor (E) for
the reaction, which in this case is identical to the diaster-
eoselectivity (since the effects of mass action are eliminated) on
the assumption that there are no non-linear effects operating.8
Thus, (±)-1 was added to a solution of (±)-2 at 278 °C and
quenched by addition of 2,6-di-tert-butylphenol. 1H NMR
spectroscopic analysis of the crude reaction mixture indicated
the presence of the two C(1) epimeric diastereoisomers (±)-6
and (±)-7 (95+5) together with < 1.5% of a third diastereoi-
somer, consistent with > 98.5% control at the b-centre during
the conjugate addition. Purification of the major diaster-
eoisomeric product, g-methyl-cis-pentacin
(1RS,2SR,3RS,aSR)-6,9 to homogeneity by column chromatog-
raphy and subsequent complete conversion to the thermody-
namic epimer, g-methyl-trans-pentacin (1SR,2SR,3RS,aSR)-7,
by treatment with KOtBu/tBuOH (3 h at reflux) confirmed that
the two diastereoisomers (±)-6 and (±)-7 were epimeric at C(1)
(Scheme 2).

The configuration at C(2) within (±)-6 and (±)-7 relative to
the N-a-methylbenzyl stereocentre was assigned by analogy
with previous models developed to explain the stereoselectivity
observed during addition of lithium amide 2 to a,b-unsaturated
acceptors.10 1H NOE difference analysis subsequently gave
enhancements consistent with the (1RS,2SR,3RS,aSR) config-
uration of diastereoisomer (±)-6 and the (1SR,2SR,3RS,aSR)
configuration of diastereoisomer (±)-7, consistent with the
expected thermodynamics of the system, as described in Fig.
2.

Notably, while both diastereoisomers exhibited a 7.1% NOE
enhancement between their C(2)H and C(3)Me protons, the

Fig. 1

Scheme 1 Reagents and conditions: (i). PhNMe2 (3.15 eq.), tBuOH (3.25
eq.), Et2O, rt; (ii). NaH (1.05 eq.), tBuOH (cat), PhMe, D; (iii). NaH (1.05
eq.) then n-BuLi (1.0 eq.), then MeI (1.1 eq.), 278 °C to 0 °C; (iv). NaBH4,
EtOH, 0 °C; (v). TsCl (1.1 eq.), pyridine, 0 °C to rt; (vi). DBU, DCM, 0
°C.

Scheme 2 Reagents and conditions: (i). (±)-lithium N-benzyl-N-a-
methylbenzylamide (2 eq.), THF, 278 °C; (ii). 2,6-di-tert-butylphenol,
THF, 278 °C to rt; (iii). KOtBu, tBuOH, D, 3 h.

Fig. 2 Selected NOE difference enhancements for diastereoisomers (±)-6
and (±)-7; other NOE enhancements omitted for clarity.
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8.1% enhancement between C(1)H and C(2)H of the major
diastereoisomer (±)-6 was only 3.1% for the minor diastereoi-
somer (±)-7. This indicates that both diastereoisomers (±)-6 and
(±)-7 have the same anti-configuration between C(2)H and
C(3)Me, but while the major diastereoisomer has a syn-
relationship between C(1)H and C(2)H, the minor diastereoi-
somer (±)-7 has the anti-relationship between C(1)H and
C(2)H. Thus, the nucleophilic lithium amide adds to the a,b-
unsaturated acceptor anti to the C(3) methyl group, while
protonation of the resultant enolate occurs anti to the amine,
resulting in the preferential formation of g-methyl-cis-pentacin
(1RS,2SR,3RS,aSR)-6. As measurement of the diastereoiso-
meric product ratios in a mutual kinetic resolution reaction
allows the magnitude of the stereoselectivity factor to be
assessed, the magnitude of the stereoselectivity factor, E could
be quantified as > 70. Having established the high level of
recognition between the g-methyl conjugate acceptor 1 and
racemic lithium amide 2, the kinetic resolution of (±)-1 with
homochiral lithium (S)-N-benzyl-N-a-methylbenzylamide 2
was undertaken. Thus, treatment of (±)-1 with 0.7 eq. of (S)-2 at
278 °C for three hours before the addition of 2,6-di-tert-butyl
phenol gave, at approximately 51% conversion, a 95.5+1.7+2.8
mixture of diastereoisomers 6:7+8, consistent with E > 130,
and (S)-1 {[a]24

D 284.7, (c. 1.1, CHCl3)} in 99 ± 0.5% ee.11

(Scheme 3).

With the relative configurations within 6 and 7 known in the
racemic series from the mutual recognition studies, the absolute
configurations of (1R,2S,3R,aS)-6 and (1S,2S,3R,aS)-7 derive
from the known configuration of the N-a-methylbenzyl ster-
eocentre. The C(1) configuration of the third minor diaster-
eoisomeric product 8 arising from the kinetic resolution
protocol is presently unknown. Purification by column chroma-
tography and recrystallisation gave 6 in 39% yield (78% of
theoretical maximum) and 99 ± 0.5% de. As 6 has the (1R,2S)
configuration of cis-pentacin required for biological activity,
deprotection to the b-amino acid was undertaken to prepare the
g-methyl analogue of the natural product. Thus, Pd mediated N-
debenzylation and treatment with TFA gave (1R,2S,3R)-
3-methyl-2-aminocyclopentane carboxylic acid 9 in 69% yield
and 98 ± 1% ee12 after purification by ion exchange chromatog-
raphy (Scheme 4).

In conclusion, this protocol allows for the diastereoselective
synthesis of g-methyl cis- and trans-pentacin analogues, which
are of interest for pharmacological evaluation and for b-peptide
structural studies respectively.13 Furthermore, the asymmetric
synthesis of (1R,2S,3R)-3-methyl-2-aminocyclopentane car-
boxylic acid has been achieved by kinetic resolution of (±)-tert-
butyl 3-methylcyclopentene-1-carboxylate with a homochiral
lithium amide and subsequent deprotection. The extension of
this methodology to the preparation of other homochiral cis-
and trans-pentacin analogues from (±)-tert-butyl g-alkyl cyclo-
pentene-1-carboxylates is currently under investigation.
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Scheme 3 Reagents and conditions: (i). (S)-lithium N-benzyl-N-a-
methylbenzylamide (0.7 eq.), THF, 278 °C; (ii). 2,6-di-tert-butylphenol,
THF, 278 °C to rt.

Scheme 4 Reagents and conditions: (i). Pd(OH)2 on C, MeOH, H2 (5 atm);
(ii). TFA+DCM (1+1) then Dowex 50W-X8.
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