Synthesis and structural characterization of $Be(\eta^5-C_5Me_5)(\eta^1-C_5Me_4H)$. Evidence for ring-inversion leading to $Be(\eta^5-C_5Me_4H)(\eta^1-C_5Me_5)^{\dagger}$

M. M. Conejo,^a R. Fernández,^a D. del Río,^a E. Carmona,^{*a} A. Monge^b and C. Ruiz^b

^a Departamento de Química Inorgánica-Instituto de Investigaciones Químicas, Universidad de

Sevilla-Consejo Superior de Investigaciones Científicas, c/ Américo Vespucio s/n, Isla de la Cartuja, 41092 Sevilla, Spain. E-mail: guzman@us.es (for E. Carmona)

^b Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain. E-mail: nines@immrxl.icmm.csic.es (for A. Monge)

Received (in Cambridge, UK) 13th September 2002, Accepted 16th October 2002 First published as an Advance Article on the web 4th November 2002

The mixed-ring beryllocene Be(C_5Me_5)(C_5Me_4H), that contains η^5 - C_5Me_5 and η^1 - C_5Me_4H rings, the latter bonded to the metal through the CH carbon atom (X-ray crystal structure) reacts at room temperature with CNXyl (Xyl = C_6H_3 -2,6-Me₂) to give an iminoacyl product, Be(η^5 - C_5Me_4H)[C(NXyl)C₅Me₅] derived from the inverted beryllocene structure Be(η^5 - C_5Me_4H)(η^1 - C_5Me_5).

Apart from Be(C₅Me₅)₂ which exhibits in the solid state an almost regular sandwich structure,¹ the two other beryllocenes structurally characterized by X-ray methods, *viz*. Be(C₅H₅)₂² and Be(C₅Me₄H)₂,¹ addopt a slip-sandwich, or $\eta^5/\eta^1(\pi)$, geometry, with two nearly parallel rings. However, in spite of the different coordination of the two cyclopentadienyl ligands,³ only one set of resonances for the C₅H₅ and C₅Me₄H groups is found in the NMR spectra of the complexes, even at low temperatures (-135 °C).^{1,4} Thus beryllocenes are highly fluxional molecules that participate in dynamic processes, very fast on the NMR time scale even at the lowest temperatures accessible.

Molecular dynamic calculations on Be(C_5H_5) $_2^5$ have identified two very facile rearrangements, namely a 1,5-sigmatropic shift of the Be(η^5 - C_5H_5) unit around the periphery of the η^1 - C_5H_5 ring (through an η^5/η^2 transition state; calculated activation barrier of 5 kJ mol⁻¹) and a molecular inversion that interchanges the η^5 - and η^1 -rings by means of an η^3/η^3 transition state (activation energy 8 kJ mol⁻¹). The rates for molecular redistribution in solution^{4b} (300 K) and in the gas phase⁵ (400 K) are of the order of 10^{10} - 10^{12} s⁻¹, therefore, as indicated above, detection of these processes by NMR methods is unattainable.

We have employed recently the reaction of $Be(C_5Me_4H)_2$ and CNXyl (Xyl = C_6H_3 -2,6-Me₂) as a chemical probe⁶ for the signatropic rearrangement, and demonstrated the existence in solution of η^5/η^1 isomers of octamethyl beryllocene. Naturally, the identity of the two rings makes molecular inversion (if operative) invisible. To circumvert this problem, we have prepared the mixed-ring complex $Be(C_5Me_5)(C_5Me_4H)$ (1) and have initiated the study of its reactivity toward CNXyl.

Nonamethylberyllocene (see Fig. 1) can be prepared by the high-temperature interaction of $Be(C_5Me_5)Cl^7$ and $K(C_5Me_4H)$ [eqn. (1)].

$$Be(C_5Me_5)Cl + K(C_5Me_4H) \xrightarrow{115 \circ C_536h} Be(C_5Me_5)(C_5Me_4H)$$
(1)

Prolonged heating at elevated temperatures is needed and the reaction gives low isolated yields of the desired beryllocene (*ca.* 25%). Compound **1** is, however, a highly crystalline material that has solubility and other properties similar to those of $Be(C_5Me_5)_2$ and $Be(C_5Me_4H)_2$. A related mixed-ring deriva-

† Electronic supplementary information (ESI) available: experimental and characterization data for 1 and 2, computational details. See http:// www.rsc.org/suppdata/cc/b2/b208972f/ tive, Be(C₅Me₅)(C₅H₅) was reported by Aroney and coworkers^{7b} and formulated as Be(η^{5} -C₅Me₅)(η^{1} -C₅H₅) on the basis of solution IR and NMR spectroscopic studies. Nonetheless, solid-state characterization of this species was not provided.

Crystals of 1 have been studied at low-temperature (130 K) by X-ray methods.[†] In accord with expectations, the C₅Me₅ ring is centrally bound to beryllium (Fig. 1) and the C₅Me₄H group bonded in an η^1 -fashion through the CH carbon, C(11). The two rings are planar and nearly parallel [angle of 4.9(1)°]. Metal coordination to the η^5 -ring is remarkably regular, the five Be–C distances are almost identical and cluster in the very narrow interval from 1.896(3)–1.919(3) Å. The Be– η^1 -C₅Me₄H moiety is characterized by a Be-C(11) distance of 1.776(3) Å and a Be-C(11)-ring plane angle of 102.5°. The difference in the length of the $C_{\beta\beta}$ and $C_{\alpha\beta}$ bonds of only 0.06 Å (α and β refer to the position with respect to the Be-bonded C11 carbon) is suggestive of considerable electron delocalization in the ring π system.⁵ All these data are indicative of a slipped sandwich structure similar to that of $Be(C_5H_5)_2^2$ and $Be(\hat{C_5}Me_4H)_2$,¹ but with a geometry around C(11) closer to distorted tetrahedral than in $Be(C_5H_5)_2$.

Even if variable temperature ¹H and ¹³C{¹H} NMR studies on 1 (from -90 to +95 °C) are indicative of fluxional behaviour, they provide no evidence as for the nature of the processes that occur in solution. The signals due to the ring carbon nuclei of the C₅Me₅ group vary very little with temperature (20 °C, δ 108.9; -90 °C, δ 108.7). Contrarily, the resonance attributable to the CH carbon of C₅Me₄H displaces toward higher field by almost 9 ppm upon lowering the temperature from +95 °C (δ 67.0) to -90 °C (δ 59.3). Parallel changes, albeit of smaller magnitude and opposite direction (*i.e.* to lower field), are registered for the signals associated with the other carbon nuclei

Fig. 1 Isomeric η^5/η^1 structures for Be(C₅Me₅)(C₅Me₄H).

10.1039/b20897

of this ring (δ 124.2 and 122.5, at -95 °C; δ 128.1 and 124.5 at -90 °C, signals due to the α - and β -C nuclei at either of the above temperatures). An important contribution of the Be(η^{5} -C₅Me₅)(η^{1} -C₅Me₄H) structure **A** to the solution structure may be inferred from these data. This assumption finds further support in the observation in the ¹³C{¹H} NMR spectrum of **1** recorded at +95 °C of a well-resolved coupling (*ca.* 10 Hz) between the quadrupolar ⁹Be (I = 3/2) and the ¹³C nucleus of the CH group. A reasonable explanation for this dynamic behaviour is a sigmatropic shift of the Be(η^{5} -C₅Me₅) unit around the periphery of the η^{1} -C₅Me₄H ring. Nevertheless, since the effect of the inverted structure, Be(η^{5} -C₅Me₄H)(η^{1} -C₅Me₅), **D** on the observed ¹H and ¹³C{¹H} chemical shifts cannot be predicted, concomitant rearrangement of **1** by molecular inversion should not ruled out.

To gain further information on the dynamics of 1, and in particular to verify the accessibility of the inverted structure **D**, we have investigated the reaction of **1** and CNXyl. Similarly to Be(C₅Me₅)₂ and Be(C₅Me₄H)₂,⁶ stirring at room temperature a solution of $Be(C_5Me_5)(C_5Me_4H)$ and CNXyl allows the formation of an iminoacyl product, 2. The Be-iminoacyl linkage of 2 is characterized by a sharp IR absorption at 1570 cm^{-1} and by a low-field ¹³C{¹H} resonance at δ 156.5 due to the beryllium-bound iminoacyl carbon. However, most remarkably, the analysis of the NMR data (ESI) unambiguosly reveals that 2 contains an η^5 -C₅Me₄H ligand, and an iminoacyl functionality that incorporates the C_5Me_5 group of 1 (Scheme 1). In accord with this, three ¹³C resonances are identified for the C₅Me₄H group at δ 100.6 (CH, ¹J_{CH} 165 Hz), 109.6 and 111.2, and another three for those of the C₅Me₅ ring (δ 71.2, 135.6 and 140.6). For the latter, three ${}^{13}C{}^{1}H{}$ methyl resonances (δ 11.0, 11.5 and 16.6) can also be discerned. Structural confirmation by X-ray crystallography has been obtained and will be reported elsewhere. Not unexpectedly, the overall structure of 2 is similar to that reported recently for the related beryllium iminoacyl Be(n⁵-C₅Me₅)(C(NXyl)C₅Me₅).⁶

Considering that four η^5/η^1 isomers are possible for compound **1**, other isomers of the iminoacyl **2** are likely to exist. However, leaving this aside for the time being, it is worth pointing out that the reaction of Scheme 1 constitutes a chemical demostration of the molecular inversion rearrangement between the non-degenerate structures **A** and **D**.

The electronic structure of the η^5/η^1 isomers of **1** (Fig. 1) has been evaluated with the aid of DFT calculations (see ESI for details[†]). Naturally, **A** has been found to be the most stable

isomer, **B–D** lying 3.0-4.0 kcal mol⁻¹ higher in energy. The Be-C bond lengths of A have been reproduced very accurately (calculated and observed Be-C bond distances are identical). However, and analogously to $Be(C_5H_5)_2$,⁹ theory leads to nonparallel rings for A (Be-CH-ring plane angle of 111°, experimental value 102.5°), and therefore to a structure close to $\eta^{5/\eta^{1}}(\sigma)$, so far demonstrated only in the B(C₅Me₅)⁺ cation.¹⁰ Differently, when beryllium is η^1 -bonded to a CMe group (as in **B–D**), calculations lead to the slip-sandwich geometry, with Be-C(Me)-ring plane angles (102-104°) that resemble those experimentally found for beryllocenes^{1,2} and zincocenes.¹¹ The small energy difference among the isomeric structures A-D provides a theoretical basis for the isolation of the iminoacyl compound 2 and suggests moreover that, like for Be-(C5-Me₄H)₂,⁶ isolation of other iminoacyl isomers may be feasible.

In summary, with the X-ray study of **1** the number of structurally characterized beryllocenes has been raised to four.^{1,2} Nonamethylberyllocene, Be(η^5 -C₅Me₅)(η^1 -C₅Me₄H), is however unique among this small family of metallocenes, since it is the only one containing two different cyclopentadie-nyl rings. Its room temperature reaction with CNXyl yields an iminoacyl product that derives from the inverted beryllocene, Be(η^5 -C₅Me₄H)(η^1 -C₅Me₅), thereby providing chemical evidence for the molecular inversion process that exchanges the two Cp' groups, of these metallocenes.

Financial support from DGESIC (to E.Carmona project BQU2001-1195), and the Ministerio de Ciencia y Tecnología (M. M. C., R. F. and D. R., predoctoral grants) is gratefully acknowledged.

Notes and references

‡ Crystal data for 1: C₁₉H₂₈Be, M = 265.42, monoclinic $P2_1/n$, a = 8.0745(5), b = 6.6634(6), c = 30.295(2) Å, $\beta = 92.097(2)^\circ$, V = 1628.9(2) Å³, Z = 4, $D_c = 1.082$ Mg m⁻³, T = 130(2) K, total reflections = 6690, unique reflections = 3033 ($R_{\rm int} = 0.0385$). Final $R_1 = 0.084$, $wR_2 = 0.175$ (all data), GoF = 0.93. CCDC reference number 193648. See http:// www.rsc.org/suppdata/cc/b2/b208972f/ for crystallographic data in CIF or other electronic format.

- 1 M. M. Conejo, R. Fernández, E. Gutiérrez-Puebla, A. Monge, C. Ruiz and E. Carmona, *Angew. Chem., Int. Ed.*, 2000, **39**, 1949.
- 2 (a) K. W. Nugent, J. K. Beattie, T. W. Hambley and M. R. Snow, Aust. J. Chem., 1984, **37**, 1601; (b) C. H. Wong, T. Y. Lee, K. J. Chao and S. Lee, Acta Crystallogr., Sect. B, 1972, **28**, 1662; (c) C. H. Wong, T. Y. Lee, T. J. Lee, T. W. Chang and C. S. Liu, Inorg. Nucl. Chem. Lett., 1973, **9**, 667.
- 3 (a) P. Jutzi and N. Burford in *Metallocenes*, ed. A. Togni and R. L. Halterman, Wiley-VCH, vol. 1, 1998, ch. 2; (b) T. P. Hanusa, *Organometallics*, 2002, 21, 2559.
- 4 (a) C. Wong and S. Wang, *Inorg. Nucl. Chem. Lett.*, 1975, **11**, 677; (b)
 K. W. Nugent, J. K. Beattie and L. D. Field, *J. Phys. Chem.*, 1989, **93**, 5371.
- 5 P. Margl, K. Schwarz and P. E. Blöchl, J. Chem. Phys., 1995, 103, 683.
- 6 M. M. Conejo, R. Fernández, E. Carmona, E. Gutiérrez-Puebla and A. Monge, *Organometallics*, 2001, 20, 2434.
- 7 (a) C. J. Burns and R. A. Andersen, J. Organomet. Chem., 1987, 325, 31; (b) S. J. Pratten, M. K. Cooper and M. J. Aroney, J. Organomet. Chem., 1990, 381, 147.
- 8 (a) J. K. Beattie and K. W. Nugent, *Inorg. Chim. Acta*, 1992, **198–200**, 309; (b) L. Nyulászi and P. von Ragué Schleyer, *J. Am. Chem. Soc.*, 1999, **121**, 6872.
- 9 L. W. Mire, S. D. Wheeler, E. Wagenseller and D. S. Marynick, Organometallics, 1998, 37, 3099.
- 10 (a) A. Voigt, S. Filipponi, C. L. B. Macdonald, J. D. Gorden and A. H. Cowley, *Chem. Comm.*, 2000, 911; (b) P. Jutzi and A. Senfert, *J. Organomet. Chem.*, 1978, **161**, 5.
- (a) D. J. Burkey and T. P. Hanusa, J. Organomet. Chem., 1996, 512, 165; (b) B. Fischer, P. Wijkens, J. Boersma, G. van Koten, W. J. J. Smeets, L. Spek and P. H. M. Budzelaar, J. Organomet. Chem., 1989, 376, 223.