The first observation of four-electron reduction in [60]fullerene-metal cluster self-assembled monolayers (SAMs)[†]

Youn-Jaung Cho, Hyunjoon Song, Kwangyeol Lee, Kyuwon Kim, Juhyoun Kwak, Sehun Kim and Joon T. Park*

Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea. E-mail: jtpark@mail.kaist.ac.kr; Fax: +82 42 869 2810; Tel: +82 42 869 2826

Received (in Cambridge, UK) 17th September 2002, Accepted 23rd October 2002 First published as an Advance Article on the web 6th November 2002

Self-assembled monolayers (SAMs) of a $\mu_3 - \eta^2 : \eta^2 : \eta^2 - C_{60}$ triosmium cluster complex Os₃(CO)₈(CN(CH₂)₃-Si(OEt)₃)($\mu_3 - \eta^2 : \eta^2 : \eta^2 - C_{60}$) (2) on ITO or Au surface exhibit ideal, well-defined electrochemical responses and remarkable electrochemical stability being reducible up to tetraanionic species in their cyclic voltammograms.

Thin films of fullerene-based materials have demonstrated potential usefulness in superconductivity, non-linear optics, and photovoltaic cells.¹ The successful technological application of these thin films relies on rational chemical modification of fullerenes and the development of methodologies to arrange them on a variety of surfaces in molecularly highly ordered fashion. In order to obtain definable, two-dimensional fullerene structure, C₆₀ self-assembled monolayers (SAMs) have been prepared by using various linkages such as an amine,² azide,³ and pyrrolidine ring.⁴ The usage of surface-tailoring linkages, however, inadvertently disrupts the π -delocalization of C₆₀ by forming σ -bonds, and thus the prepared C₆₀ SAMs show rather poorly defined electrochemical properties and instability in reduced states, which renders severe limits on technological applications.^{2–4} We have reported a number of C_{60} -metal cluster complexes with a face-capping μ_3 - η^2 : η^2 : η^2 -C₆₀ bonding mode,5 which exhibit remarkable electrochemical stability and unusual electronic communication between C₆₀ and metal cluster units.⁶ Furthermore, the electrochemical property of these complexes can be fine-tuned by the nature of the ligands on the metal cluster.^{5,6} Herein we report the preparation of robust SAMs of a μ_3 - η^2 : η^2 : η^2 -C₆₀ triosmium cluster on indium-tin oxide (ITO) or gold (Au) electrode by using an organic linkage 3-(triethoxysilyl)propyl isocyanide, which can bind to both the metal cluster and the electrode surface, and their ideal and well-defined electrochemical responses.

Initial decarbonylation of $Os_3(CO)_9(\mu_3-\eta^2:\eta^2:\gamma^2-C_{60})$ (1)^{5a} with Me₃NO–MeCN and subsequent reaction with 3-(triethoxysilyl)propyl isocyanide in chlorobenzene at 60 °C affords $Os_3(CO)_8(CN(CH_2)_3Si(OEt)_3)(\mu_3-\eta^2:\eta^2:\gamma^2-C_{60})$ (2) in 35% yield. Compound 2 is formulated by the molecular ion isotope multiplets (*m*/*z* (highest peak) = 1747) in the FAB+ mass spectrum and by spectroscopic and microanalytical data.[‡] The IR spectrum of 2 shows a similar pattern to that of $Os_3(CO)_8(CNCH_2Ph)(\mu_3-\eta^2:\eta^2:\gamma^2-C_{60})$, ^{5c} suggesting that the isocyanide ligand in 2 is terminally coordinated at an equatorial site of an Os center.

The cyclic voltammogram (CV) of **2** in deoxygenated dichloromethane exhibits three quasi-reversible redox waves at -1.01, -1.37, and -1.81 V ($E_{1/2}$ vs. Fc/Fc⁺) as shown in Fig. 1a (dotted line). The first and second waves are attributed to successive one-electron reductions, while the third corresponds to overlapped two one-electron processes as similarly observed in Os₃(CO)₈(PMe₃)(μ_3 - η^2 : η^2 : η^2 -C₆₀), due to electronic communication between the C₆₀ and metal cluster centers.^{6b}

The SAM of 2 (2/ITO) is prepared by immersing an ITO electrode in a 1 mM chlorobenzene solution of 2 at room temperature for 3 days, followed by repeated washing with chlorobenzene and dichloromethane (Scheme 1a). The contact angle $\theta_{H_2O} = 71^{\circ}$ of 2/ITO is substantially increased from $\theta_{H_2O} = 34^{\circ}$ of bare ITO, consistent with adsorption of hydrophobic 2 on the ITO surface. The observed water contact angle corresponds closely to the values (65–80°) previously reported for C₆₀-terminated SAMs.² The X-ray photoelectron spectra of 2/ITO with C(1s) and Os(4f) lines further confirm the formation of SAM of 2.

The CV of **2**/ITO (Fig. 1a, solid line) in deoxygenated dichloromethane surprisingly reveals three, well-resolved redox waves at -1.08, -1.40, and -1.86 V ($E_{1/2}$) with relative area of 1:1:1.7,¶ which are very similar to the electrochemical behavior of **2** in solution. The monolayer surface coverage (Γ) of **2**/ITO, 1.8×10^{-10} mol cm⁻²,∥ is obtained by current integration of the first reduction peak in CV, which is slightly smaller than ~1.9 × 10⁻¹⁰ mol cm⁻² for a close packed monolayer of C₆₀.⁸ The **2**/ITO exhibits an almost ideal

Fig. 1 Cyclic voltammograms of (a) **2** (...) and **2**/ITO (—)§; (b) **1**/ITO in CH_2Cl_2 with 0.1 M Bu_4NPF_6 as an electrolyte; scan rate = 0.5 Vs⁻¹.

2966

Scheme 1 Reagents and conditions: (a) i, 2, chlorobenzene, RT, 3 days; (b) ii, (EtO)₃Si(CH₂)₃NH₂, chlorobenzene, RT, 2 days; iii, 1, chlorobenzene, RT, 3 days.

electrochemical response due to structural homogeneity of surface C₆₀-metal cluster moieties; the half-width potential (ΔE_{fwhm}) of 103 mV for the first reduction peak at a scan rate of 0.2 V s⁻¹ is comparable to the theoretical value of 90.6 mV for the reversible CV.7 The redox potentials of 2/ITO are slightly shifted to negative potentials (av. $\Delta E_{1/2} = 0.05$ V) as compared to those of 2 in solution. Much larger negative shifts $(0.1-0.2 \text{ V})^{2,4a,4b}$ have been observed in other fullerene-based SAMs, in which linkage molecules and C_{60} underwent σ -bond forming reactions. The four-electron reduction of C₆₀ in fullerene-based SAMs is unprecedented, which attests the remarkable electrochemical robustness of 2/ITO. This remarkable reflection of solution redox properties and ideal electrochemical responses in 2/ITO may be ascribed to the fact that π delocalization of C_{60} is little perturbed by $\pi\text{-type}$ coordination of C₆₀ on the metal cluster and the C₆₀ moiety remains intact during SAM formation by confining the C₆₀-metal cluster complex to the electrode surface via a linkage to the metal center.

Reaction of **2** with HO(CH₂)₆SH-treated Au electrode ($\theta_{H_{2O}} = 20^{\circ}$) produces SAM of **2** on Au surface (**2**/Au) with $\theta_{H_{2O}} = 72^{\circ}$ and $\Gamma = 1.6 \times 10^{-10}$ mol cm⁻²,¶ which shows essentially identical electrochemical behavior as for **2**/ITO. Imaging of **2**/Au by scanning tunneling microscopy (STM) shows a high coverage of C₆₀-triosmium cluster molecules, which appear as ellipsoidal shapes with a long axis of ~2 nm, on a flat HO(CH₂)₆SH-modified Au(111) surface without any discernible over-layer structure as shown in Fig. 2.

The ideal electrochemical response for 2/ITO is completely lost for 1/ITO, which is prepared by reaction of 1 and 3-(triethoxysilyl)propyl amine-modified ITO (Scheme 1b).** The CV of 1/ITO shows two broad redox waves at -1.23 and -1.59 V with large cathodic shifts (0.25 V) as previously reported for other C₆₀-based SAMs (Fig. 1b).^{2,4a,9} Indiscriminate reactions and multiple additions of the surface amine moieties to various reaction sites of the C₆₀ surface of 1 may

Fig. 2 High-resolution STM image (18×18 nm) of 2/Au(111). The scan parameters for this image were -1.0 V sample bias and 50 pA tunneling current.

lead to inhomogeneity of surface C_{60} -metal cluster species, which causes poorly defined electrochemical responses for the resulting SAM. The large negative shift of the reduction waves is also consistent with amine additions to C_{60} and the resultant perturbation of π -electron delocalization of the C_{60} moiety.

In conclusion, we have demonstrated that the solution electrochemical behavior of C_{60} can be directly transferred to a two-dimensional surface structure by immobilizing C_{60} -metal cluster complexes to the electrode surface *via* a linkage to the metal center. The ideal, well-defined electrochemical responses and high stability of the C_{60} -metal cluster SAMs, together with ready modification of the electronic properties of C_{60} by substitution of various ligands on metal centers, promise useful technological applications of fullerene-metal cluster-based SAMs. Efforts are currently underway with these SAMs to manufacture high-performance fullerene-based photovoltaic cells and molecular electronic devices.

This work was supported by the National Research Laboratory (NRL) Program of the Korean Ministry of Science & Technology (MOST) and the Korea Science & Engineering Foundation (Project No. 1999-1-122-001-5).

Notes and references

‡ Selected data for **2**: IR (CH₂Cl₂) ν (NC) 2194(m); ν (CO) 2068(vs), 2037(s), 2018(s), 1996(m), 1995(w) cm⁻¹; ¹H NMR (CDCl₃): δ 4.00 (m, 2H), 3.78 (q, *J* 7, 6H), 1.87 (m, 2H), 1.19 (t, *J* 7, 9H), 0.69 (m, 2H); FAB+ MS, *m*/*z* 1751 (M⁺). Anal. Calc. for C₇₈H₂₁NO₁₁Os₃Si: C 53.6, H 1.21, N 0.80. Found: C 53.9, H 1.26, N 0.88%.

§ The origin of the small wave between the second and third reduction waves is not clear at the moment.

¶ Integrations for the forward and backward waves are comparable; the integration for the broad third reduction wave was obtained by doubling the integrated charge to the cathodic peak potential (-1.95 V).

 \parallel The surface coverages are calculated using the real surface areas of the electrodes (ITO: 0.36 cm²; Au: 0.33 cm²), which are determined by the electrochemical method based on mass transfer and adsorption processes.¹⁰

** $\theta_{\rm H_2O}$ = 66° and Γ = 1.5 × 10⁻¹⁰ mol cm⁻² for 1/ITO; $\theta_{\rm H_2O}$ = 45° for 3-(triethoxysily))propyl amine-modified ITO.

- (a) C. A. Mirkin and W. B. Caldwell, *Tetrahedron*, 1996, **52**, 5113; (b)
 X. K. Wang, T. G. Zhang, W. P. Lin, S. Z. Liu, G. K. Wong, M. M. Kappes, R. P. H. Chang and J. B. Ketterson, *Appl. Phys. Lett.*, 1994, **64**, 2785; (c)
 H. Imahori, H. Norieda, H. Yamada, Y. Nishimura, I. Yamazaki, Y. Sakada and S. Fukuzumi, *J. Am. Chem. Soc.*, 2001, **123**, 100.
- 2 (a) K. Chen, W. B. Caldwell and C. A. Mirkin, J. Am. Chem. Soc., 1993, 115, 1193; (b) W. B. Caldwell, K. Chen, C. A. Mirkin and S. J. Babinec, Langmuir, 1993, 9, 1945; (c) K. Kim, H. Song, J. T. Park and J. Kwak, Chem. Lett., 2000, 532.
- 3 (a) V. V. Tsukruk, L. M. Lander and W. J. Brittain, *Langmuir*, 1994, **10**, 996; (b) Y.-S. Shon, K. F. Kelly, N. J. Halas and T. R. Lee, *Langmuir*, 1999, **15**, 5329.
- 4 (a) X. Shi, W. B. Caldwell, K. Chen and C. A. Mirkin, J. Am. Chem. Soc., 1994, 116, 11598; (b) H. Imahori, T. Azuma, S. Osawa, H. Yamada, K. Ushida, A. Ajavakom, H. Norieda and Y. Sakada, Chem. Commun., 1999, 557; (c) D. Hirayama, K. Takimiya, Y. Aso, T. Otsubo, T. Hasobe, H. Yamada, H. Imahori, S. Fukusumi and Y. Sakata, J. Am. Chem. Soc., 2002, 124, 532.
- 5 (a) J. T. Park, J.-J. Cho, H. Song, M.-K. Chung, J.-H. Lee and I.-H. Suh, *Organometallics*, 1998, **17**, 227; (b) K. Lee, C.-H. Lee, H. Song, J. T. Park, H. Y. Chang and M.-G. Choi, *Angew. Chem., Int. Ed.*, 2000, **39**, 1801; (c) H. Song, C. H. Lee, K. Lee and J. T. Park, *Organometallics*, 2002, **21**, 2514.
- 6 (a) J. T. Park, J.-J. Cho, H. Song, C.-S. Jun, Y. Son and J. Kwak, *Inorg. Chem.*, 1997, **36**, 2698; (b) H. Song, K. Lee, J. T. Park and M.-G. Choi, *Organometallics*, 1998, **17**, 4477; (c) H. Song, Y. Lee, Z.-H. Choi, K. Lee, J. T. Park, J. Kwak and M.-G. Choi, *Organometallics*, 2001, **20**, 3139; (d) K. Lee, H. Song, B. Kim, J. T. Park, S. Park and M.-G. Choi, *J. Am. Chem. Soc.*, 2002, **124**, 2872.
- 7 R. W. Murray, *Chemically Modified Electrodes, in Electroanalytical Chemistry*, ed. A. J. Bard, Marcel Dekker, New York, 1984, vol. 13, p. 192.
- 8 S. Liu, Y. Lu, M. Kappes and J. A. Ibers, Science, 1991, 254, 408.
- 9 H. Daifuku, K. Aoki, K. Tokuda and H. Matsuda, J. Electroanal. Chem., 1985, 183, 1.
- 10 G. Jarzabek and Z. Borkowska, Electrochim. Acta, 1997, 42, 2915.