www.rsc.org/chemcomm

ChemComm

Ruiyao Wang, Datong Song and Suning Wang*

Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada. E-mail: wangs@chem.queensu.ca

Received (in Cambridge, UK) 5th July 2001, Accepted 17th December 2001 First published as an Advance Article on the web 29th January 2002

Two novel tetradecanuclear hydroxo–lanthanide complexes, formulated as $Ln_{14}(\mu_4\text{-OH})_2(\mu_3\text{-OH})_{16}(\mu-\eta^2\text{-acac})_8(\eta^2\text{-acac})_{16}$, Ln = Tb, 1; Eu, 2; acac = acetylacetonato, were synthesized and characterized by single-crystal X-ray diffraction, elemental analysis and phosphorescence spectroscopy.

Nanoscale-materials enjoy great popularity due to their rich electronic, optical, magnetic, and catalytic properties associated with their quantum size effects and large surface areas.^{1,2} Of particular interest are lanthanide-based systems that have potential applications in electroluminescent displays, phosphors for fluorescent lighting, X-ray imaging, scintillators, fiber-optic amplifiers, solid state lasers as well as fluorescent tags of biological molecules.^{1–3} However, the high expectations of using these particles have been compromised by the large crystalline sizes, agglomerative nature of the particles and the broad size distributions.⁴ With the ultimate goal of solving the problem by constructing nanoscale molecules, which are thermodynamically stable and of monodisperse size distribution, our initial efforts focus on assembling large clusters *via* ligand-controlled hydrolysis of lanthanides.

Many polynuclear hydroxo-lanthanide clusters have been reported in the past two decades and, among them, two basic structural motifs of high symmetry are found, which are cubanelike clusters (e.g. $[Ln_4(\mu_3-OH)_4]^{8+}$) and square pyramids (e.g. $[Ln_5(\mu_3-OR)_4]^{11+}$, R = H or alkyl). Zheng, Gao and coworkers' work on hydroxo-lanthanide complexes containing $[Ln_4(\mu_3-OH)_4]^{8+}$ established that 4 or 5 $[Ln_4(\mu_3-OH)_4]^{8+}$ units can be assembled to form 'cubane-wheels' with Cl-, Br- or Ias the anion-templates, and 3-dimensional infinite structures can be constructed by using aspartic acid or glutamic acid as the bridging ligands.^{5,6} On the other hand, reports by Hubert-Pfalzgraf and co-workers and several other research groups $on^{7,8} Ln_5(\mu_5-O)(\mu_3-OR)_4(\mu_2-OR)_4(OR)_5$ (square pyramid, Ln = La, Pr, Sm, Yb, Y; R = isopropyl, *tert*-butyl), $[Y_9(\mu_4-O)_2(\mu_3-D)_2(\mu_4-O)_2(\mu_3-D)_2(\mu_4-O)_2(\mu_4-D)_2(\mu$ OH)₈ $(\mu - \eta^2 - R)_8(\eta^2 - R)_8$ [- (two apex-shared square pyramids, R = MeC(O)CHC(O)OEt),⁹ [Ln₆(μ_6 -O)(μ_3 -OH)₈]⁸⁺ (octahedron, Ln = Nd, Sm, Gd, Dy, Er, Yb, Y)⁶ and Eu₅(μ_4 -OH)(μ_3 -OH)₄(μ -DBM)₄(DBM)₆ (square pyramid, DBM = 1,3-diphenylpropanedionato)¹⁰ demonstrated the possibility of assembling large hydroxo-lanthanide clusters with either the square pyramid unit $[Ln_5(\mu_3-OR)_4]^{11+}$ or the octahedral unit $[Ln_6(\mu_4-O)(\mu_3-OH)_8]^{8+}$ as building blocks. By hydrolyzing $Ln(acac)_3 \cdot 4H_2O$ (Ln = Tb, Eu) in CH₂Cl₂-hexane with 2,2'-dipyridylsufide as the base,† we synthesized the first tetradecanuclear complexes $Ln_{14}(\mu_4$ - $OH)_{2}(\mu_{3}-OH)_{16}(\mu-\eta^{2}-acac)_{8}(\eta^{2}-acac)_{16}(Ln = Tb, 1, Eu, 2)$ that contain an octahedral Ln₆ unit sharing two opposing apexes with two square pyramidal Ln₅ units.

Both complexes have been fully characterized by elemental analysis, phosphorescent spectroscopy as well as single-crystal X-ray diffraction analysis, \ddagger which indicate that complexes 1 and 2 are iso-structural with comparable cell parameters and the same space group *I4/mmm*.

The molecular structure of $[Ln_{14}(\mu_4\text{-}OH)_2(\mu_3\text{-}OH)_{16}(\mu-\eta^2-acac)_8(\eta^2-acac)_{16}]$ (Fig. 1 and 2, where Ln = Tb) has a crystallographically imposed D_{4h} symmetry. Due to the similarity of **1** and **2**, only the structure of **1** is presented herein. All

Tb(III) ions in the molecule have a coordination number 8. The central portion of **1** is an octahedral Tb₆ unit with 8 hydroxo ligands capping all triangular faces. Within the Tb₆ unit, the Tb–Tb distances are 3.9304(10) Å [Tb(1)–Tb(3)] and 3.9697(13) Å [Tb(1)–Tb(1')]. All previously known octahedral Ln₆ units in molecular compounds have a μ_6 -oxo ligand in the center of the

Fig. 1 A diagram showing the molecular structure of 1. The carbon atoms on acac ligands are all disordered. One set of the disordered carbon atoms is shown by hollow bonds.

Fig. 2 A diagram showing the core structure of 1 with all carbon atoms omitted.

octahedron, which is believed to play a key role in stabilizing the Ln_6 unit. To our best knowledge, compound 1 is the first example of a hydroxo-lanthanide complex that has a 'hollow' octahedral Ln₆ unit without the support of a μ_6 -oxo ligand. Each of the four Tb(III) ions in the basal plane of the Tb_6 unit is chelated by two acac ligands. The carbon atoms of all acac ligands are disordered over two sites with 50% occupancy for each site. Similar site disordering, displayed by hexafluoroacetylacetonato ligands of lanthanide complexes, has been observed previously.¹¹ There are two square pyramidal Tb₅ units that are connected to the Tb₆ unit by sharing two opposite vertices of the Tb₆ unit. Within the Tb₅ unit, all triangular faces are occupied by μ_3 -hydroxo ligands. The square face of the Tb₅ unit is occupied by a μ_4 -hydroxo ligand that is at 0.303 Å above the Tb₄ basal plane. Each edge of the basal plane in the Tb₅ unit is bridged by one μ - η^2 -acac ligand in a similar fashion as observed in Eu₅(µ₄-OH)(µ₃-OH)₄(µ-DBM)₄(DBM)₆.¹⁰ In fact the Tb₅ portion of compound 1 has a striking resemblance to those of Eu₅(μ_4 -OH)(μ_3 -OH)₄(μ -DBM)₄(DBM)₆ and [Y₉(μ_4 - $O_2(\mu_3-OH)_8(\mu-\eta^2-R)_8(\eta^2-R)_8]^{-.9}$ As a consequence of the μ_4 -hydroxo and acac bridges, the Tb–Tb distances [Tb(2)–Tb(2') = 3.5867(11), Tb(2)–Tb(3) = 3.7664(11) Å] within the Tb₅ unit are much shorter than those of the hollow Tb₆ unit. The Tb₄ square plane in the Tb₅ unit is rotated by 45° with respect to the Tb₄ square plane in the central Tb₆ unit. The dimensions of compound **1** are approximately $19 \times 13 \times 13$ Å.

Complex 1 yields bright green luminescence in both the solid state and solution. The UV-Vis, excitation and emission spectra of complex 1 in CH₂Cl₂ are shown in Fig. 3, which are similar to those of $Tb(acac)_3 \cdot 4H_2O$. The UV-Vis spectrum of 1 resembles that of $Y(acac)_3 \cdot nH_2O$ and the excitation spectrum of 1, indicating that the excitation is mostly acac ligand-based. The emission spectrum of complex 1 is typical of Tb(III) emission with a decay lifetime of 797(8) µs and 931(5) µs in the solid state and CH₂Cl₂ solution, respectively, at 298 K. The absence of typical Tb(III) excitation bands in the excitation spectrum of 1 leads us to believe that indirect excitation (ligand assisted excitation) is operative in compound 1. In the solid state, compound 1 is visibly much brighter than $Tb(acac)_3 \cdot 4H_2O$, perhaps due to the increased rigidity of 1. In CH₂Cl₂ solution, the brightness of 1 and Tb(acac)₃·4H₂O is comparable. (The relative quantum-yield of complex 1 vs. that of $Tb(acac)_3$ ·4H₂O in CH_2Cl_2 was determined to be ~ 0.53 at 298 K). Compound 2 is only weakly red-luminescent in solution and the solid state with a typical Eu(III) emission spectrum (decay lifetime = 345(2) μ s in the solid state, 323(1) μ s in CH₂Cl₂ at 298 K). The excitation spectrum of 2 in solution resembles that of 1. However, in the solid state, the excitation spectrum of 2 is mostly characteristic of Eu(III). Hence, ligand-assisted or indirect excitation appears not to be effective in 2, which is likely accountable for its low emission intensity.

Compounds 1 and 2 are soluble in polar organic solvents such as THF and CH₂Cl₂. However, mass spectroscopic studies by electron-spray methods did not reveal the molecular ions. The most intense peak observed in the ES mass spectra of 1 and 2 corresponds to the formula of $[Ln_9(OH)_{10}(acac)_{16}]^+$, which is an analogue of $[Y_9(\mu_4-O)_2(\mu_3-OH)_8(\mu-\eta^2-R)_8(\eta^2-R)_8]^-$ reported

Fig. 3 The UV–Vis, excitation and emission spectra of 1.

by Hubert-Pfalzgraf and co-workers.⁹ The mass data appear to indicate that compounds 1 and 2 dissociate to a Ln_9 and a Ln_5 (observed in ES mass spectra) species in solution. Further study on the solution behavior of 1 and 2 and their potential applications in nano-scaled inorganic–organic composite materials and photonic devices are currently being explored in our laboratory.

In summary we have accomplished the syntheses and characterization of two new members of the hydroxo–lanthanide cluster family that have an unprecedented 'hollow' Ln_6 octahedron with two apex-attached Ln_5 square pyramids. These two compounds demonstrate that large hydroxo–lanthanide clusters based on both square pyramid and octahedron building blocks can be assembled by controlled hydrolysis of Ln-(acac)₃·4H₂O in the presence of 2,2'-dipyridylsulfide. Modification of the reaction conditions could lead to the formation of even larger hydroxo–lanthanide clusters, something which is being investigated by our group.

We thank the Natural Sciences and Engineering Research Council of Canada and the Xerox Research Foundation for financial support.

Notes and references

† *Experimental procedure*: In a typical synthesis, 0.50 mmol of Ln-(acac)₃·4H₂O was dissolved in 5 mL of CH₂Cl₂ and 0.50 mmol of 2,2'-dipyridylsulfide in 2 mL of CH₂Cl₂ was added dropwise. The mixture was allowed to stand at room temperature overnight and the solution was concentrated. About 30 mL of hexane was added to the residue thereafter and the solution was refluxed for about 3 h. The resulting clear solution was kept at ambient temperature and cubic block crystals were obtained in 2–3 weeks. 1, analysis for vacuum dried samples, calc. for C₁₂₀H₁₈₆O₆₆Tb₁₄: C, 29.34; H, 3.79. Found: C, 29.67; H, 4.05%. **2**, calc. for C₁₂₀H₁₈₆O₆₆Eu₁₄: C, 29.95; H, 3.87. Found: C, 30.52; H, 3.96%.

‡ Crystal data: **1**, C₁₂₀H₁₈₆O₆₆Tb₁₄·0.33C₆H₁₄, M_r = 4937.6, tetragonal, space group *14/mmm*, a = 21.090(4), b = 21.090(4), c = 21.213(5) Å, V = 9436(3) Å³, Z = 2, $D_c = 1.738$ g cm⁻³, μ (Mo-K α) = 5.244 mm⁻¹, F(000) = 4721, T = 296(2) K. The crystal of **1** was sealed in a glass capillary along with the solution. The data were collected on a Bruker CCD 1000 X-ray diffractometer at ambient temperature. Of the 34150 reflections collected, 3210 unique reflections with $R_{int} = 0.0438$ were used in all calculations. $R_1 = 0.0731$, $wR_2 = 0.1480$ for all 3210 data; **2** is isostructural to **1** with similar unit cell parameters. The remaining hydrogen atoms were neither calculated nor located.

CCDC reference number 167051.

See http://www.rsc.org/suppdata/cc/b105969f/ for crystallographic data in CIF or other electronic format.

- 1 (a) A. P. Alivisatos, Science, 1996, **271**, 933; (b) A. P. Alivisatos, J. Phys. Chem., 1996, **100**, 13226.
- 2 (a) B. M. Tissue, *Chem. Mater.*, 1998, 10, 2837 and references therein;
 (b) A. Huignard, T. Gacoin and J.-P. Boilot, *Chem. Mater.*, 2000, 12, 1090 and references therein.
- 3 (a) J. Kido, K. Nagai and Y. Ohashi, *Chem. Lett.*, 1990, 657; (b) G. E. Jabbour, J. F. Wang, B. Kippelen and N. Peyghambarian, *Jpn. J. Appl. Phys.*, *Part 2:*, 1999, **38**, 1553.
- 4 (a) K. Landfester, Adv. Mater., 2001, 13, 765; (b) C. Feldmann and H.-O. Jungk, Angew. Chem., Int. Ed., 2001, 40, 359.
- 5 (a) R. Wang, Z. Zheng, T. Jin and R. J. Staples, Angew. Chem., Int. Ed., 1999, **38**, 1813; (b) B. Q. Ma, D.-S. Zhang, S. Gao, T.-Z. Jin, C.-H. Yan and G.-X. Xu, Angew. Chem., Int. Ed., 2000, **39**, 3644; (c) Z. Zheng and R. Wang, Comments Inorg. Chem., 2000, **22**, 1.
- 6 (a) R. Wang, M. Carducci, T. Jin and Z. Zheng, *Inorg. Chem.*, 2000, **39**, 1836; (b) D.-S. Zhang, B.-Q. Ma, T.-Z. Jin, S. Gao, C.-H. Yan, Chun-Hua Yan and T. C. W. Mak, *New J. Chem.*, 2000, **24**, 61.
- 7 (a) O. Poncelet, W. J. Sartain, L. G. Hubert-Pfalzgraf, K. Folting and K. G. Caulton, *Inorg. Chem.*, 1989, **28**, 263; (b) S. Daniele, L. G. Hubert-Pfalzgraf, P. B. Hitchcock and M. F. Lappert, *Inorg. Chem. Commun.*, 2000, **3**, 218.
- 8 L. G. Hubert-Pfalzgraf, New J. Chem., 1995, 19, 727 and references therein.
- 9 L. G. Hubert-Pfalzgraf, N. Miele-Pajot, R. Papiernik and J. Vaissermann, J. Chem. Soc., Dalton Trans., 1999, 4127.
- 10 R.-G. Xiong, J.-L. Zuo, Z. Yu, X.-Z. You and W. Chen, *Inorg. Chem. Commun.*, 1999, 2, 490.
- 11 W. Y. Yang, L. Chen and S. Wang, Inorg. Chem., 2001, 40, 507.