Zipping up 'the crushed fullerene' $C_{60}H_{30}$: C_{60} by fifteen-fold, consecutive intramolecular H_2 losses[†]

Berta Gómez-Lor,^{*ab*} Carola Koper,^{*c*} Roel H. Fokkens,^{*d*} Edward J. Vlietstra,^{*c*} Thomas J. Cleij,^{*c*} Leonardus W. Jenneskens,^{**c*} Nico M. M. Nibbering^{*e*} and Antonio M. Echavarren^{*a*}

- ^a Departamento de Quimica Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- ^b Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
- ^c Debye Institute, Department of Physical Organic Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. E-mail: jennesk@chem.uu.nl
- ^d Supramolecular Chemistry and Technology, MESA⁺ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- ^e Laser Centre and Chemistry Department, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Received (in Cambridge, UK) 19th November 2001, Accepted 14th January 2002 First published as an Advance Article on the web 30th January 2002

MALDI TOF-MS of tribenzo[l:l':l'']benzo[1,2-e:3,4-e':5,6-e'']triacephenanthrylene (1a, C₆₀H₃₀) gives C₆₀⁺ by multiple intramolecular cyclodehydrogenation reactions.

The proposal that laser evaporation of graphite gives the fullerene C_{60} ,¹ followed by its isolation from arc-evaporated graphite soot² in sufficient quantities has had considerable impact. For example, the chemical modification of C_{60} has become a subject of intense research.³ However, despite many efforts,⁴ rational syntheses of any of the hitherto isolated fullerenes from unimolecular precursors still remain elusive. Only recently mass spectral (FT-ICR LD⁵ and LD-TOF MS⁶) evidence has been reported showing that C_{60} '+/ C_{60} '- are accessible from the transient $C_{60}H_6$ cyclophane-like polyyne generated *in situ* in the mass spectrometer.

In a different approach inspired by the observation that in suitable flames C_{60} and C_{70} are formed besides the common (non)-alternant polycyclic aromatic hydrocarbon (PAH) effluents,⁷ tribenzo[*1*:*1'*:*1''*]benzo[*1*,2-*e*:3,4-*e'*:5,6-*e''*]triacephenanthrylene [**1a**, $C_{60}H_{30}$, C_3 ; ΔH_{f}^0 (AM1) 344.6 kcal mol⁻¹, Chart 1], was put forward as an unimolecular C_{60} precursor.^{8–10}

Chart 1

Notice that **1a** has the exact carbon atom topology of the C₆₀ Schlegel diagram (Fig. 1). Unfortunately, the initial synthesis of **1a** by S₈-mediated cyclotrimerization of 4,5-dihydro[*I*]benzacephenanthrylene [**2**, C₁, Chart 1]^{10,11}† lacked proper *regio*chemical control.^{8,12} Scrutiny of the cyclotrimerization mechanism using AM1¹³ results strongly indicated that instead of **1a**, its unsymmetrical isomer tribenzo[*I*:*I*':*I*"]benzo[1,2-*e*:3,4*e*':6,5-*e*"]triacephenanthrylene [**1b**, C₁; ΔH_f^0 (AM1) 345.3 kcal

† Electronic supplementary information (ESI) available: AM1 optimised geometries, heats of formation, first ionisation potentials, Schlegel diagrams and MALDI TOF-MS spectrum of 1a⁺⁺. See http://www.rsc.org/ suppdata/cc/b1/b110587f/ mol⁻¹] will be the major $C_{60}H_{30}$ product (statistical *ratio* **1a** : **1b** 1 : 3).⁸ Whilst **1a** can be converted into C_{60} via fifteen-fold, consecutive intramolecular H_2 losses accompanied by ring closures, **1b** will yield either a curved $C_{60}H_{12}$ or $C_{60}H_{10}$ PAH under identical conditions, viz. in the absence of rearrangements of its carbon skeleton. MALDI TOF-MS (positive-ion mode)‡ of the S₈-cyclotrimerization reaction mixture containing **1a**/**1b** corroborated these contentions. At a high laser fluence of *ca*. 440 µJ pulse⁻¹ consecutive intramolecular H_2 losses from m/z 750 ($C_{60}H_{30}$ ⁻⁺) down to m/z 732/730 ($C_{60}H_{12}$ ⁻⁺/ $C_{60}H_{10}$ ⁻⁺) were clearly discernible. However, no evidence for C_{60} ⁻⁺ (m/z 720) formation was found.⁸⁺

Here we report that fifteen-fold, consecutive intramolecular cyclodehydrogenations occur if pure **1a**, prepared *via* triple Pd-catalysed arylation of *syn*-5,10,15-tris[2-(1-bromo)naphthylmethyl]truxene,^{9,16} is subjected to similar MALDI TOF-MS conditions.

At a laser fluence of *ca*. 12 μ J pulse⁻¹ the precursor ion **1a**⁺⁺ (C₆₀H₃₀⁺⁺, *m/z* 750) undergoes three-fold H₂ losses giving C₆₀H₂₈⁺⁺, C₆₀H₂₆⁺⁺ and C₆₀H₂₄⁺⁺ [*m/z* 748 (11%), 746 (3%) and 744 (2%)].‡§ No skeletal fragmentation of **1a** occurs. At a laser fluence of *ca*. 440 μ J per pulse, however, cyclodehydrogenation products spanning the mass range *m/z* 750 (C₆₀H₃₀⁺⁺) down to *m/z* 720 (C₆₀⁺⁺) are unequivocally identified [Fig. 2; *m/z* 748 (85%), 746 (72%), 744 (43%), 742 (23%), 740 (10%), 738 (6%), 736 (5%), 734 (4%), 732 (3%), 730 (2%), 728 (1%), 726 (2%), 724 (2%), 722 (6%) and 720 (5%)].‡§The stepwise character of the multiple cyclodehydrogenations is substantiated by the following additional observations:

i) At low laser fluences (*ca.* 12 μ J pulse⁻¹) decacyclene [**3**, C₃₆H₁₈ (*D*₃)^{8,14,15,†}] and benzo[1,2-*e*:3,4-*e*':6,5-*e''*]triacephenanthrylene [**4**, C₄₈H₂₄ (*C*₃)^{16†}] like **1a** undergo stepwise threefold intramolecular overall H₂ losses from C₃₆H₁₈⁺⁺ and C₄₈H₂₄⁺⁺ down to C₃₆H₁₂⁺⁺ [*m*/*z* 448 (10%), 446 (4%) and 444 (1%)]^{14,15} and C₄₈H₁₈⁺⁺ [*m*/*z* 598 (7%), 596 (3%) and 594

Fig. 1 Projection of 1a on the C₆₀ Schlegel diagram.[†]

370

(1%)], respectively.§ In contrast at a laser fluence of 440 μ J per pulse **3**⁺⁺ in line with previous observations¹⁵ fragments extensively, while **4**⁺⁺ still gives C₄₈H₂₂⁺⁺, C₄₈H₂₀⁺⁺ and C₄₈H₁₈⁺⁺.

Only in the case of $1a^{++}$ are consecutive cyclodehydrogenations spanning the mass range m/z 750 down to m/z 720 (C₆₀⁺) observed.§

ii) The *post-source-decay* (PSD)¹⁷ spectra, in which **1a**⁺⁺ is isolated prior to TOF-MS analysis, measured at different laser fluences, are nearly identical to the corresponding *in-source* spectra.[†] Similar observations were made for **3**⁺⁺ and **4**⁺⁺. Hence, intramolecular H₂ losses accompanied by ring closures originate from the precursor ions of **1a**, **3** and **4**, respectively.

Insight into the conversion of 1a into C_{60} was obtained using AM1¹³ calculations.[†]¶ Interestingly, the results indicate that cyclodehydrogenations occur with regio-chemical control. In propeller-like **1a** (C_3 , ΔH_f^0 344.6 kcal mol^{-1 8}) the three innermost, symmetry related C-H(a) pairs are congested due to interaction with a C-H moiety of a neighbouring unit $[H(a)\cdots H]$ 1.89 Å]. Thus, they are susceptible to undergo ring-closure giving bowl-shaped $C_{60}H_{24}$ (C_3 , ΔH_{f^0} 481.0 kcal mol⁻¹) in which three other C-H(b) pairs $[H(b)\cdots H 2.01 \text{ Å}]$ become congested (Chart 1 and Fig. 1); this will facilitate $C_{60}H_{18}$ (C_3 , $\Delta H_{\rm f}^{0}$ 625.7 kcal mol⁻¹) formation. In C₆₀H₁₈ the C-H(c) pairs $[H(c) \cdots H 2.14 \text{ Å}]$ are prone to undergo cyclodehydrogenation towards $C_{60}H_{12}(C_3, \Delta \hat{H}_f^0$ 777.2 kcal mol⁻¹). After closure of the next set of over-crowded C-H(d) bonds the ring-opened fullerene C₆₀H₆ ($C_{3\nu}$, ΔH_f^0 874.3 kcal mol⁻¹) is obtained. Closure of the latter into C_{60} (I_h , ΔH_f^0 973.4 kcal mol⁻¹) may involve three extra overall H₂ losses and ring closures, *i.e.* occur *via* ring-opened fullerenes $C_{60}H_4(C_s, \Delta H_f^0 930.5 \text{ kcal mol}^{-1})$ and $C_{60}H_2$ (C_s , ΔH_f^0 977.5 kcal mol⁻¹),†¶ However, AM1 calculations also showed that the ring-closed isomer of $C_{60}H_6(C_{3v}, \Delta H_f^0 865.3 \text{ kcal mol}^{-1}^{\dagger})$, accessible via a 2 + 2 + 2 cycloaddition, is 9 kcal mol⁻¹ more stable.¹⁸ Similarly, ringclosed analogues of ring-opened C₆₀H₄ (C_s , ΔH_f^0 901.1 and C_s , $\Delta H_{\rm f}^0$ 892.2 kcal mol⁻¹[†]) and ring-opened C₆₀H₂(C_s, $\Delta H_{\rm f}^0$ 950.0 and $C_{2\nu}$, $\Delta H_{\rm f}^0$ 931.2 kcal mol⁻¹⁺) were found to be 29.4/38.3 and 27.5/46.3 kcal mol⁻¹, respectively, more stable. Thus from **1a**, curling up and closure of the surface presumably involves three-fold 6-, 5-, 5-, and 6-membered ring closures, a 2 + 2 + 2 cycloaddition followed by three-fold overall H₂ losses. In line with the endothermic homolytic C-H bond scission energy (*ca.* 100 kcal mol⁻¹ for PAH¹⁹) excess energy (high laser fluences), is required to accomplish all ring-closures and overall H₂ losses. Whereas for the consecutive conversion of C₆₀H₃₀ into C₆₀H₂₄, C₆₀H₁₈ and C₆₀H₁₂, respectively, similar ΔH_r [= $\Delta H_f^{0}(C_{60}H_x) - \Delta H_f^{0}(C_{60}H_{x-6})$] values (136.4, 144.7 and 151.5 kcal mol⁻¹) are found, $\Delta H_r(C_{60}H_{12} \rightarrow C_{60}H_6)$ (97.1 kcal mol⁻¹) is decisively smaller.[†]These results rationalise: i) cyclodehydrogenations of 1a will be only discernible in the positive-ion mode TOF-MS spectra.8[‡] ii) The similarity of the in-source and PSD¹⁷ TOF-MS spectra of 1a. iii) The gradual

Fig. 2 MALDI TOF-MS spectrum of **1a** (laser fluence *ca.* 440 μ J pulse⁻¹). See ESI for the nearly identical *post-source-decay* (PSD)¹⁷†‡ MALDI TOF-MS spectrum of **1a**⁺⁺ (*m*/*z* 750).

decrease in intensity of the mass peaks concomitant with an increasing number of overall H₂ losses. iv) The occurrence of near zero peak intensities in the mass range m/z 730–726.

Isotope pattern analysis in the mass range m/z 720 to m/z 725 shows that at the high laser fluence (*ca.* 440 µJ pulse⁻¹) both C₆₀⁺⁺ and C₆₀H₂⁺⁺ are formed [*ratio* 1:1, natural isotope pattern: *calc.* 720 (4.9%), 721 (3.3%), 722 (6.0%), 723 (3.5%), 724 (1.1%) and 725 (0.3%); *found* 720 (5.0%), 721 (3.5%), 722 (6.0%), 723 (3.6%), 724 (2.0%) and 725 (0.9%), Fig. 2]. Just after we finished this work an independent report of the conversion of **1a** into C₆₀⁺⁺ using LDI MS appeared.²⁰

In summary, at high laser fluences **1a** is converted stepwise into C_{60} ⁺. This renders **1a** a synthon for the formation of endohedral derivatives of C_{60} ^{;21} experiments are in progress.

Financial support to B. G.-L. [DGES (Project PB97-002) and Comunidad Autónoma de Madrid (postdoctoral fellowship to B. G.-L)] is acknowledged.

Notes and references

‡ MALDI TOF-MS (positive-ion mode): Applied Biosystems/PerSeptive Biosystems Voyager-DE-RP MALDI TOF-MS [N₂ laser; λ_{exc} 337 nm (3 ns pulses)]. TOF-MS spectra were recorded in the reflection mode.⁸

Samples: $1a^9$, $3^{14,15}$ and 4^{16} were mixed with a dihydroxybenzoic acid solution (3 mg L⁻¹); 1 µL of the suspension was loaded on the Au-sample plate. At a laser fluence of *ca*. 8 µJ pulse⁻¹ 1a only gives a peak at *m/z* 750 [C₆₀H₃₀⁺ natural isotope pattern: calc. 750 (100%), 751 (67%), 752 (22%) and 723 (6%); found 750 (100%), 751 (70%), 752 (33%) and 723 (10%)]. Cyclodehydrogenation reactions are not discernible in the negative-ion mode TOF-MS spectra (see text and ref. 8).

Besides pure ¹²C peaks, natural isotope peaks corresponding to the presence of single and double ¹³C isotopes are discernible.

 \P With the exception of the AM1¹³ geometry of ring-opened (5,6) C₆₀H₂, all structures were identified as minima by harmonic analysis.[†]

- 1 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, *Nature*, 1985, **318**, 162.
- 2 W. Krätschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, *Nature*, 1990, **347**, 354.
- 3 For a review: A. Hirsch, Top. Curr. Chem., 1999, 199, 1.
- 4 For a review see: G. Mehta and H. S. Prakash Rao, *Tetrahedron*, 1998, **54**, 13325 and references cited therein.
- 5 Y. Rubin, T. Parker, S. J. Pastor, S. Jalisatgi, C. Boulle and C. L. Wilkins, *Angew. Chem., Int. Ed. Engl.*, 1998, **37**, 1226; *cf.* also F. Diederich, S. W. McElvany, M. M. Ross and N. S. Goroff, *Science*, 1993, **259**, 1594 and references cited therein.
- 6 Y. Tobe, N. Nakagawa, J. Kishi, M. Sonoda, K. Naemura, T. Wakabayashi, T. Shida and Y. Achiba, *Tetrahedron*, 2001, 57, 3629.
- 7 A. L. Lafleur, J. B. Howard, K. Taghizadeh, E. F. Plummer, L. T. Scot, A. Necula and K. C. Swallow, *J. Phys. Chem.*, 1996, **100**, 17421 and references cited therein.
- 8 M. Sarobe, R. H. Fokkens, T. J. Cleij, L. W. Jenneskens, N. M. M. Nibbering, W. Stas and C. Versluis, *Chem. Phys. Lett.*, 1999, **313**, 31.
- 9 B. Gómez-Lor, Ó. de Frutos and A. M. Echavarren, *Chem. Commun.*, 1999, 2431.
- 10 Cf. also M. J. Plater, J. Chem. Soc., Perkin Trans. 1, 1997, 2897.
- 11 M. Sarobe, L. W. Jenneskens, J. Wesseling and U. E. Wiersum, J. Chem. Soc., Perkin Trans. 2, 1997, 703 and references cited therein.
- 12 Cf. also: K. Zimmerman, R. Goddard, C. Krüger and M. W. Haenel, Tetrahedron Lett., 1996, 37, 8371.
- 13 M. J. S. Dewar, E. G. Zoebisch, E. F. Healey and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.
- 14 M. Sarobe, *Ph.D. Thesis*, Utrecht University, Utrecht, The Netherlands, 1998, Chapter 8.
- 15 S. P. Ekern, A. G. Marshall, J. Szczepanski and M. Vala, *J. Phys. Chem. A*, 1998, **102**, 3498.
- 16 Ó. de Frutos, B. Gómez-Lor, T. Granier, M. A. Monge, E. Puebla-Gutierrez and A. M. Echavarren, *Angew. Chem., Int. Ed. Engl.*, 1999, 38, 204.
- 17 B. Spengler, J. Mass Spectrom., 1997, 32, 1019.
- 18 Cf. also: Y. Rubin, Chem. Eur. J., 1997, 3, 1009.
- 19 J. Cioslowski, G. Liu, M. Martinov, P. Piskorz and D. Moncrieff, *J. Am. Chem. Soc.*, 1996, **118**, 5261 and references cited therein.
- 20 M. M. Boorum, Y. V. Vasil'ev, T. Drewello and L. T. Scott, *Science*, 2001, **294**, 828.
- 21 Cf. J.-F. Nierengarten, Angew. Chem., Int. Ed. Engl., 2001, 40, 2973 and references cited therein.