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Electrode-immobilized microperoxidase-11 exhibited a ti-
tratable potentiometric response to imidazole, demonstrat-
ing both molecular recognition and the capability for
“switchable” changes in the affinity of an immobilized
redox-receptor for a target ligand.

Biological macromolecules serve as useful structural recogni-
tion elements in biosensors. A desirable goal in biosensor
design is the ability to control molecular recognition in a
switchable (“on” / “off”) fashion through means of an external
stimulus. Recent solution studies have demonstrated the
influence of oxidation state on the affinity and specificity of
electroactive redox-receptors for target ligands.1 We were
motivated to investigate such effects with immobilized redox-
receptors with the goal of imparting switchable recognition
properties to biosensors. Described here are our results
demonstrating electrochemical control of affinity of an elec-
trode-immobilized model redox-receptor, microperoxidase-11
(MP-11), for imidazole, a model small molecule target.

Microperoxidases are electroactive peptides proteolytically
derived from cytochrome c and comprised of an 8-11 amino
acid sequence containing a covalently attached heme group
(denoted as MP-8 through MP-11).2 The heme-iron center of
microperoxidase is ligated at four coordination sites within the
heme group and has two free sites available for binding other
ligands. In both MP-8 and MP-11, a histidine residue in the
peptide sequence coordinates one of these two sites.3 Prior to
our investigation, it was recognized that the free coordination
site of MP-8 in solution could bind a variety of weak base
ligands, including imidazole, amino acids, and pyridine.4 It was
also recognized that electrode-immobilized MP-11 exhibits
reversible electrochemistry of the heme (FeII/FeIII) couple.5
Based on these demonstrations and on the sensitivity of the
heme (FeII/FeIII) formal potential on ligation,6 we were
motivated to examine electrode-immobilized MP-11 as a model
integrated recognition switch and transduction element—one
that could bind a molecule with one of two binding constants
depending upon electrode voltage and that could report binding
of a target molecule by shift in formal potential.

Microperoxidase-11 (MP-11), shown in Scheme 1, was
covalently immobilized on either freshly-cleaned gold wire or
gold disc electrodes by cross-linking to amine-terminated self-
assembled monolayers on gold, using a modification of the
method of Lotzbeyer, et al.7 The formal potential of im-
mobilized MP-11, as measured by cyclic voltammetry, was
20.377 V (vs. Ag/AgCl), and is in agreement with previously
published results.8,9 With addition of imidazole, the formal
potential of MP-11 decreased incrementally to a minimum
value of 20.408V (vs. Ag/AgCl) at 10 mM imidazole. Fig. 1
shows cyclic voltammetry of electrode-immobilized MP-11 in
the absence and presence of 4.7 mM imidazole. Fig. 2 shows the
dependency of the formal potential of MP-11 on imidazole
concentration. Control experiments showed that the shift in

formal potential was not due to changes in ionic strength or
repeated scanning of the MP-11-modified electrode.

The negative shift in the formal potential indicates that the
binding of imidazole stabilizes oxidized MP-11 and that MP-11
has a higher affinity for imidazole in the oxidized state than in
the reduced state.10 The ratio of binding constants of the
oxidized and reduced forms of MP-11 for imidazole may be
determined from the following equation:10,11

K1/K2 = exp[2(nF/RT)(E2 2 E1)] (1)

where K1 and K2 represent the binding constants of oxidized and
reduced forms of MP-11 for imidazole, and E1 and E2 represent
the formal potentials for MP-11 in the absence and presence of
10 mM imidazole, respectively. For the observed 230.7mV
(±5mV) shift, K1/K2 = 3.3 (2.7–4.0).

To extract unique binding constants for the oxidized and
reduced forms of MP-11 for imidazole, the observed formal
potentials in Fig. 2 were compared with formal potentials
obtained from electrochemical simulations using DigiSim

Scheme 1 Amino acid sequence of MP-11.

Fig. 1 Cyclic voltammetry of electrode-immobilized MP-11 in the absence
(dotted line) and presence (solid line) of 4.7 mM imidazole (scan rate = 400
mV s21).

Fig. 2 Experimental voltammetric titration curve of electrode-immobilized
MP-11 with imidazole. Observed formal potentials shown with standard
deviation of measurements (n = 3). Solid line shows fit obtained from
simulation using K1 = 6250 M21 and K2 = 1890 M21.
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software.12 The best fits to the observed data were obtained with
K1 = 6250 M21 (±700 M21) and K2 = 1890 M21 (±150 M21)
(see Fig. 2). K1, the value of the affinity constant of the oxidized
form of MP-11, was compared to the binding constant obtained
from spectrophotometric titration of oxidized MP-11 in solu-
tion. Oxidized microperoxidase exhibits a strong Soret ab-
sorbance ( ~ 400 nm) that is red-shifted in the presence of
ligands, and this parameter has been used to quantitatively
assess its affinity for a variety of ligands.13 Fig. 3 shows the
position of the Soret peak of oxidized MP-11 as a function of
increasing amounts of imidazole.14

From this titration, the affinity constant of the oxidized form
of MP-11 for imidazole in solution was 7690 M21 (7140 – 8330
M21). The close agreement between the affinity constants for
electrode-immobilized MP-11 and MP-11 in solution suggests
that the binding of imidazole at the electrode surface is
proceeding through the coordination of imidazole to surface-
accessible “vacant” ligand sites on MP-11. The above results
are the first account of the electrochemical detection of a ligand
by electrode-immobilized microperoxidase and furthermore
demonstrate the capability to switch the affinity of an electrode-
immobilized redox-receptor for a ligand by addressing the
oxidation state of the receptor. We are currently investigating
the effects of differing immobilization strategies and covalent
modifications of MP-11 for the specific recognition of target
analytes.
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