Sodium and potassium 3-sila-β-diketiminates show new coordination modes

James D. Farwell, Peter B. Hitchcock and Michael F. Lappert*

The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk

Received (in Cambridge, UK) 15th November 2001, Accepted 10th January 2002 First published as an Advance Article on the web 6th February 2002

The reaction between the lithium 3-sila- β -diketiminate (1) and the appropriate MOBu^t yielded the crystalline sodium (2) or potassium (3) 3-sila- β -diketiminate in high yield; X-ray crystal data and NMR spectra show new coordination modes for the [N(R)C(Ar)Si(R)C(Ar)N(R)]⁻ ligand (R = SiMe₃, Ar = C₆H₃Me₂-2,6).

We recently reported the synthesis of the new lithium 3-sila- (1) and 3-germa- (4) β -diketiminates by reaction between [Li(ER₃)(thf)₃] (E = Si or Ge) A and an appropriate nitrile PhCN/ArCN (Scheme 1, Ar = C₆H₃Me₂-2,6, R = SiMe₃).¹ Due to the reluctance of Si or Ge atoms to form double bonds, compounds 1 and 4 show a higher degree of charge localisation at the 3-position than previously noted for the carbon analogue the lithium β -diketiminate 5.²

We now focus on the heavier alkali metal compounds of the 3-sila- β -diketiminato ligand [N(R)C(Ar)Si(R)C(Ar)N(R)]⁻. To this end compound **1** was reacted with sodium or potassium *tert*-butoxide giving in high yield the appropriate alkali metal derivative, the neutral coligand-free compound **2** or **3**, respectively (Scheme 2).[†]

The yellow–orange sodium 3-sila- β -diketiminate **2** was only sparingly soluble in Et₂O but soluble in arenes or thf. The deep orange potassium 3-sila- β -diketiminate **3**, however, was even soluble in pentane.

Both **2** and **3** gave satisfactory microanalytical and ¹H NMR spectroscopic data, which were consistent with their molecular structures, established by single crystal X-ray diffraction.‡

Attempts have been made, thus far unsuccessful, to convert the lithium complex 1 into its thf-free complex. Each of crystalline 2 (Fig. 1) and 3 (Fig. 2), in contrast to 1, are neutral donor-free. Complex 2 is a centrosymmetric dimer, comprising two intramolecular boat-shaped six-membered metallacycles held together by the two intermolecular close Na \cdots Si contacts

Fig. 1 Molecular structure of 2.

Fig. 2 Molecular structure of 3.

(a similar arrangement was found in the lithium 3-germa- β -diketiminate 4¹). The central planar Si1,Na,Si1',Na' rhombus has almost equidistant Na–Si1 and Na–Si1' bonds 3.179(3) and 3.192(4) Å, respectively, but very different bond angles of 111.28(10) and 68.7(2)° subtended at the Na and Si atoms, respectively.

Complex **3** is likewise a centrosymmetric dimer, containing a central almost square Si1,K,Si1',K' ring: K–Si1 3.305(2) Å, K–Si1' 3.396(2) Å; K–Si1–K' 87.81(5)°, Si1–K–Si1' 92.19(5)°. Unlike in **2**, each 3-sila- β -diketiminato ligand additionally acts as an *N*,*N*'-bridging ligand with respect to each of the two potassium ions.

The geometry about each K ion in **3** is distorted square planar (sum of angles, 360°), with close contacts not only to the two Si atoms but also to one N atom from each ligand. The angles between the donor atoms vary between an average of 51.8° for N(1 or 2'')–K–Si(1 or 1') and $164.27(13)^{\circ}$ for N1'–K–N2'. There are also short contacts between the K ions and the methyl groups of the trimethylsilyls pendant to the Si1 or Si1' atoms [*e.g.* C26····K' 3.234 Å.] The endocyclic Si atoms Si and Si1' are therefore penta-coordinate, each having three bonds to other atoms of the ligand, and an interaction with each of the K ions.

In the dimeric lithium β -diketiminate **5** the negative charge is not resident at the 3-position, nor is it totally delocalised around the skeleton, as in many other metal β -diketiminates.³ This is evident from the difference in the pairs of C–N and M–N bond lengths, Table 1. The lithium 3-sila- β -diketiminate **1** has charge more localised at the 3-position, the pairs of Si–C and C–N distances being essentially identical.¹ For compounds **2** and **3**, the charge is even less delocalised than for **1**, as shown by the shorter C–N and longer Si–C bond lengths.

Comparison of 2 with $[Na\{N(SiMe_3)_2\}]_{\infty(or 3)} 6^4$ and $[Na\{Si(SiMe_3)_3\}]_2 7^5$ shows that the Na-Si distances in 2 are longer

Table 1 Selected bond lengths $({\rm \AA})$ for compounds 2 and 3 and related examples

Compound	M–Si	M–N	Si–C	C–N
5 ³		1.97(2)		1.33(1)
		2.01(2)		1.27(1)
1 ¹		2.000(7)	1.874(4)	1.303(5)
		1.995(7)	1.878(5)	1.308(5)
2	3.179(3)	2.370(6)	1.282(7)	
	3.192(4)	2.395(6)	1.929(6)	1.295(7)
6 ⁴		2.376(8)	1.876(4)	
7 ⁵	2.983			
3	3.305(2)	2.863(4)	1.903(5)	1.307(6)
	3.396(2)	2.857(4)	1.904(5)	1.295(6)
9 6		2.786(8)	1.876(4)	
8 ⁵	3.391			
107				1.3305(4)

than that in 7, while the Na-N distances in 2 and 6 are similar. Comparing compound 3 with $[K{Si(SiMe_3)_3}]_2 8$ one of the K–Si distances in 3 is shorter than in 8, while the other is almost identical; the K–N distances in 3 are significantly longer than those in $[K{N(SiMe_3)_2}]_2 9.^6$ Also included in Table 1 is the metal–ligand N–C bond length for $[Ni{N(H)C(CN)C(CN)N(H)}_2]^7 10$, which is longer than in any of 1–9.

The ¹³C{¹H} NMR chemical shifts for *C*=N in compounds **2** and **3** are δ 204.3 and 213.1, respectively. These unusual shifts for olefinic carbon atoms are in good agreement with that of δ 219.4 for **1**.¹

The ²⁹Si{¹H} NMR resonance for the skeletal Si atom has shifts for compounds **2** and **3** of δ -45.20 and -56.86, respectively. The ²⁹Si{¹H} chemical shifts for **7** and **8**, at δ 179.8 and -185.7, respectively, show that while the Si atoms of **2** and **3** are at a significantly lower frequency than the normal range for *Si*Me₃X groups of δ 0 to -20, they are not as shielded as those of compounds **7** and **8**.

Complexes 2 and especially 3 are of interest because they demonstrate that the extra localisation of charge at the 3 position, due to the Si atom, allows the β -diketiminato ligand extra flexibility to coordinate in new ways.

It is a pleasure to acknowledge the generous support of BASF (Ludwigshafen).

Notes and references

† Synthesis of **2** and **3**: sodium tert-butoxide (0.177 g, 1.8 mmol), as a suspension in diethyl ether (30 cm³), was added to a stirred solution of **1** (1.0 g, 1.4 mmol) in pentane (60 cm³) at -78 °C. The reaction mixture was allowed to warm to room temperature and was stirred for 16 h. All volatiles were removed *in vacuo* and, after extracting with pentane (150 cm³), as artared solution of the filtrate in toluene (*ca.* 3 cm³) was cooled at -30 °C yielding orange crystals of 2 (0.66 g, 99%). ¹H NMR (C₆D₆, 298 K): δ 0.04 (s, 9H, Si{SiMe₃}), 0.12 (s, 18H, N{SiMe₃}), 2.72 (s, 12H, C₆H₃Me₂), 7.05–7.32 (m, C₆H₃Me₂). ²⁹Si NMR (C₆D₆): δ -1.32 (s, N{SiMe₃}), -17.11 (s, Si{SiMe₃}), -45.20 (s, Si{SiMe₃}). Similarly, from potassium *tert*-butoxide (0.08 g, 0.71 mmol) and **1** (0.49 g, 0.58 mmol) in pentane (30 cm³) at -80 °C, deep orange crystals of **3** (0.28 g, 95%) were obtained. ¹H NMR (C₆D₆): δ 0.04 (s, 9H, Si{SiMe₃}), 0.12 (s, 18H, N{SiMe₃}), 2.72 (s, 12H, C₆H₃Me₂), 7.05–7.32 (m, C₆H₃Me₂). ²⁹Si NMR (C₆D₆): δ -3.09 (s, Si{SiMe₃}), -16.0 (s, N{SiMe₃}), 0.26 (s, Si{SiMe₃}).

‡ Crystal data for **2**: C₅₄H₉₀N₄Na₂Si₈·2C₇H₈, M = 1250.3, monoclinic, space group $P2_1/c$, a = 14.372(7), b = 15.689(4), c = 18.281(7) Å, $\beta = 111.69(4)^\circ$, V = 3830(3) Å³, T = 173 K, Z = 2, μ (Mo-Kα) = 0.18 mm⁻¹, 6998 reflections measured, 6721 unique ($R_{int} = 0.050$). Refinement on all F^2 , final R1 = 0.090 (for 3389 reflections with $I > 2\sigma(I)$), $wR_2 = 0.266$ (for all data).

Crystal data for **3**: C₅₄H₉₀K₄Na₂Si₈, M = 1098.2, monoclinic, space group $P2_1/c$, a = 10.539(5), b = 22.920(9), c = 13.200(6) Å, $\beta = 93.26(4)^\circ$, V = 3183(2) Å³, T = 173 K, Z = 2, μ (Mo-K α) = 0.34 mm⁻¹, 4685 reflections measured, 4418 unique ($R_{int} = 0.065$). Refinement on all F^2 , final R1 = 0.060 (for 2808 reflections with $I > 2\sigma(I)$), wR2 = 0.153 (for all data).

CCDC reference numbers 174516 and 174517. See http://www.rsc.org/ suppdata/cc/b1/b10443h/ for crystallographic data in CIF or other electronic format.

- 1 P. B. Hitchcock, M. F. Lappert and M. Layh, *Chem. Commun.*, 1998, 2179.
- 2 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Chem. Soc., Chem. Commun., 1994, 1699.
- 3 P. B. Hitchcock, M. F. Lappert, M. Layh, D.-S. Liu, R. Sablong and T. Shun, J. Chem. Soc., Dalton Trans., 2000, 2301.
- 4 R. Grünig and J. L. Atwood, J. Organomet. Chem., 1977, 137, 101; for cyclotrimer, see: J. Knizek, I. Krossing, H. Nöth, H. Schwenk and T. Seifert, Chem. Ber., 1994, 130, 1053; M. Driess, H. Pritzkow, M. Skipinski and U. Winkler, Organometallics, 1997, 16, 5108.
- 5 K. W. Klinkhammer, Chem. Eur. J., 1997, 3, 1418.
- 6 K. F. Tesh, T. P. Hanusa and J. C. Huffman, *Inorg. Chem.*, 1990, 29, 1584.
- 7 S.-M. Peng, Y. Wang and C.-K. Chiang, Acta. Crystallogr. Sect. C, 1984, 40, 1541.