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o-Phthalonitrile couples with chelating dioxime on
nickel(II), with formation of a dinuclear nickel(II) macro-
cyclic complex—the first representative of a new class of
imine-appended macrocycles.

Recent reports describe metal-promoted coupling of oximes and
nitriles by vanadium(V),1 nickel(II),2 platinum(IV),3 rhe-
nium(IV),4 or rhodium(III).5 This addition of the N–OH moiety
across the nitrile C·N bond results in formation of an imino-
ether, with new C–O and N–H linkages, and the product’s
imino-nitrogen coordinated to the nickel.2 Such coupling
potentially provides an attractive pathway for generation of a
new class of imine—appended macrocyclic ligands by reaction
of appropriate dinitriles with dioximes. The contemporary
development of metal macrocycles continues unabated, because
of their importance in biomimetic,6 supramolecular7 and
medicinal8 chemistry.

Reaction of Ni(DtoxH2)(H2O)2
2+ 1, with 1,2-dicyanoben-

zene resulted in formation of the binuclear complex 2, of the
macrocyclic ligand shown in Fig. 1—the first representative of
this new class of macrocycles. In the FAB mass spectrum of its
tetraperchlorate salt, peaks for the molecular ions (2 + 3ClO4

2)+

and (2 2 H + 2ClO4
2)+ were found at m/z 1143 and 1043,

respectively. The 1143+ peak, the most intense feature at m/z >
400, corresponds to the ion containing two nickel atoms and the
ligand moiety (Dtox/o-C6H4[CNH]2)2. These results are similar
to those observed previously for Ni{Dtox(NHCCH3)2}(ClO4)2,
isolated as the product of metal-promoted covalent addition of
CH3CN to DtoxH2.2

Deep blue crystals of the above perchlorate salt of 2, as the
trihydrate, were obtainable from nitromethane by vapour
diffusion of ether or liquid diffusion of mesitylene.9 The
triclinic unit cell contains an enantiomeric pair of dinuclear
complex cations of 2. The two oxime groups from Ni(D-
toxH2)2+ have added to two nitrile groups of two different o-
C6H4(CN)2 molecules and vice versa, resulting in four imino-
ether moieties (Fig. 2). The inequivalent Ni(II) atoms in the
dinuclear molecule are consequently located in distorted
octahedral S2N4 donor sets. Similar coordination and structural
parameters are observed for prior NiN2S4 chromophores,2,10 the
coordination core metrics of 2 being comparable with those for

[Ni{Dtox(NHCCH3)2}](ClO4)2.2 Examination of molecular
models reveals that imine-N coordination is an important factor
associated with formation of the dinucleating macrocycle: the
mononuclear product from coupling o-C6H4(CN)2 with Ni-
(DtoxH2)2+ in 1+1 molar ratio would have structural/geometric
properties which render mononucleative hexadentacy of the
ligand impossible. Even in 2, the NNC–C6H4–CNN fragments
are quite nonplanar, the N–C–C–C dihedral angles ranging from
37 to 55° and the C–C–C–C ones from 10 to 20°. The chirality
of the individual molecular cations is associated with a
conformational twist of the macrocycle into a ‘figure-8’, so that
in the enantiomer depicted in Fig. 2, each Ni is held in a left-
handed loop which provides its four endocyclic donor atoms.
The macrocycle is slightly flattened, so that its two coordination
octahedra are twisted 12° from being at right-angles (S4
relationship) to one another; the nickel atoms are 6.00 Å
apart.

The electronic spectra of 2 show two d–d transitions in
nitromethane {lmax = 832 nm [e = 250 L mol21 cm21]; 3A2g
? 3T2g; 561 nm [e = 77]; 3A2g?

3T1g(F)11,12} and in the solid
state (833, 568 nm; BaSO4 matrix), evidencing that the
molecule maintains its integrity in solution.

The cathodic and anodic electrochemistry2,12 of 2 is non-
Nernstian. In CH3CN/NEt4ClO4, the Ni(I) instability implied by
the irreversible reduction (Ep,c in cyclic voltammetry at 20.8 V
vs. SCE13) is partly a consequence of its high coordination
number,2 while the observed oxidation (Ep,a at +2.1 V vs. SCE)
is attributable to ligand oxidation.14

Because the dinuclear cation of 2 entails a conjugated –NNC–
–CNC–CNN– bridge between the nickel(II) atoms, there is the

Fig. 1 DtoxH2 and (Dtox)2{o-C6H4(CNH)2}2 ligands described in this
work.

Fig. 2 ORTEP plot of the structure of the complex cation of 2. H-atoms and
non-core atom labels are omitted, and thermal ellipsoids are shown at the
20% level for clarity. Selected bond lengths (Å): Ni(1a)–N(2a) 2.005(6);
Ni(1a)–N(3a) 1.997(6); Ni(1a)–N(4a) 2.039(5); Ni(1a)–N(1a) 2.037(4);
Ni(1a)–S(2a) 2.479(2); Ni(1a)–S(1a) 2.435(2); Ni(1b)–N(3b) 2.032(4);
Ni(1b)–N(2b) 2.022(4); Ni(1b)–N(1b) 2.047(4); Ni(1b)–N(4b) 2.072(4);
Ni(1b)–S(1b) 2.4618(16); Ni(1b)–S(2b) 2.4506(16).
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possibility for a magnetic exchange interaction, despite the
rather long pathway. Indeed, although 2 behaves as a para-
magnet from ambient temperature down to below 50 K, the
magnetic moment becomes suppressed below ca. 25 K (Fig. 3).
Application of models15,16 based on h = 2 2JS1·S2 con-
sistently indicates a very weak antiferromagnetic coupling
between the two Ni(II) (22J = 0.6 ± 0.2 cm21), although
reliable separation of the zero-field splitting contribution for
nickel(II) (ca. 21 cm21 in this fit) is not possible in situations
like this.
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Fig. 3 Temperature dependence of the magnetic susceptibility of the
dinuclear macrocycle 2, plotted as cT vs. T. The solid line is the least-
squares fit, with g = 2.18(1), na set to 0.0001 cm3 mol21, R2

(c) = 4 3
1025.
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