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A new linker for the solid phase synthesis of functionalised
carbonyl compounds which is cleaved under mild, neutral
conditions using samarium(II) iodide has been developed;
the manipulation of an immobilised g-butyrolactone has
been carried out to illustrate the utility of the linker.

The design of powerful new linker strategies is crucial to the
continued advancement of solid phase technology and combina-
torial chemistry.1,2 The most useful linkers are often described
as being traceless, the most common definition of this being
when an aliphatic or aromatic proton is introduced at the point
of cleavage.3,4 Here we describe a new linker which can be
cleaved in a simple traceless sense and which, we believe is the
first member of a potential family of linkers cleaved using
electron-transfer reagents such as samarium(II) iodide.5

Cleavage of the linker described here, relies on the well
established reduction of a-heteroatom substituted carbonyl
compounds. This transformation is most often carried out in
solution using samarium(II) iodide6 due to the neutral conditions
and the low temperatures which can be employed (Scheme
1).7

In Scheme 1, if the ‘X’ group represents a heteroatom linkage
to solid support, then the overall reaction represents cleavage
from the support and introduction of a proton at the point of
cleavage.8 We refer to this new type of linker as an a-Hetero-
Atom Substituted Carbonyl or HASC linker.9 In this commu-
nication we report the realisation of this linker approach and
illustrate its application in the solid-phase synthesis of function-
alised carbonyl compounds from an immobilised g-butyro-
lactone.

We chose to establish the linkage through the reaction of
phenol resin 1 with a-halo carbonyl compounds.10 This
immobilisation approach was selected due to the ready
availability of a-halo carbonyl compounds and the predicted
ease of the etherification reaction with phenols. Importantly, we
predicted that the cleavage step would lead to the direct
regeneration of the phenol resin 1 which could be reused
without the need for chemical re-activation. Phenol resin 1 was
readily prepared from commercially available bromo Wang
resin in two steps and in good overall yield11 (Scheme 2).

Reaction of resin 1 with chloroacetone, methyl bromoacetate,
or a-bromo-g-butyrolactone all proceeded well (K2CO3, DMF,
18-crown-6, (KI for chloroacetone), 60 °C, 24 h) to give the

corresponding alkylated resins containing the key a-aryloxy
carbonyl linkage in good yield (60–78%).12 To assess the
feasibility of the proposed linker, we carried out solution model
studies using benzyloxyphenol as a model for resin 1. One such
study is outlined in Scheme 3. The reaction of benzyloxyphenol
with a-bromo-g-butyrolactone under the conditions already
outlined gave lactone 2 in 72% yield. Ring-opening and
Weinreb amide formation, TBDPS protection and reaction with
iPrMgCl gave ketone 3 in good overall yield, which represents
a model substrate for the samarium(II) cleavage reaction.
Pleasingly, treatment of 3 with samarium(II) iodide at 0 °C
resulted in complete conversion to ketone 4 (97% isolated yield)
and benzyloxyphenol (94% isolated yield) in less than 5 min.
This clearly showed the potential of our linker approach and
illustrated the compatibility of the linkage with strongly basic
and Lewis acid conditions. In addition, the link proved to be
stable during the addition of Grignard reagents to the amide
carbonyl group. The solution model studies also suggested the
possibility of recovering and reusing the phenol resin 1.

To explore the utility of our linker we devised routes from 5
to simple, functionalised carbonyl compounds which embraced
a variety of reaction conditions. The key aspects of the route are
illustrated in Scheme 4. Lewis acid catalysed ring-opening of 5
with a variety of secondary amines was carried out followed by
subsequent silylation or acetylation of the resultant alcohol 6
(see Scheme 4). In addition, tert-butyldiphenylsilyl-protected
morpholine amides were converted to ketones 9 by reaction
with Grignard reagents. Cleavage of the linkage in amide
substrates was found to be more difficult than for analogous
ketone linkages. In the only previous example of the reduction
of a-alkoxy amides, Simpkins reported that LiCl13 was an
efficient promoter of the reaction.7b In our system, the use of
LiCl often led to incomplete cleavage of the linker. The use of
the additive DMPU was subsequently found to give excellent
results in the cleavage reaction. Crucially, we have found that
the link can be cleaved in the presence of ester groups (8d and
8e), thus clearly illustrating the mild and neutral nature of the
cleavage conditions (Table 1).

No aqueous work up is necessary on completion of the
reduction. Products were conveniently separated from DMPU
and inorganic by-products by simple filtration through a short
column of silica gel,14 after which they were found to give
satisfactory 1H and 13C NMR spectra.

Scheme 1 Reduction of a-heteroatom substituted carbonyl compounds with
samarium(II) iodide.

Scheme 2 Reagents and conditions: i, 4-TBDMSOC6H4OH 4 eq, NaH 5 eq,
DMF, rt, 18 h; ii, TBAF (1 M in THF) 6 eq, THF, rt, 15 h (resin retreated
under the same conditions): overall yield ~ 80%.

Scheme 3 Reagents and conditions: i, AlMe3 3 eq, NH(Me)(OMe)·HCl 3eq,
toluene, 0 °C–rt; ii, TBDPSCl 2 eq, imidazole 4 eq, DMF, rt, 79% (2 steps);
iii, iPrMgCl 2.5 eq, THF, 0 °C–rt, 67%; iv, SmI2 3 eq, THF, 0 °C, < 5 min:
ketone 4 97%, benzyloxyphenol 94%.
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The solid phase synthesis of cyclopropyl ketone 10b was
designed to probe the mechanism of cleavage from the resin.
The isolation of 10b, where the cyclopropyl ring is intact,15

suggests that a radical is not formed at the carbonyl carbon
during cleavage.16 This indicates that cleavage occurs by direct
reduction of the carbon–oxygen link rather than by elimination
of the a-heteroatom substituent after reduction of the
carbonyl.6a,b To the best of our knowledge, direct reduction of
an a-substituent in ketone substrates, has not previously been
proposed.

In conclusion, we have described a new linker whose
cleavage is based on the samarium(II)-mediated reduction of a-
heteroatom substituted carbonyl compounds. The key features
of the linker are its stability to a range of reaction conditions and

its mild, neutral, chemoselective cleavage. The use of different
heteroatom links and the in situ trapping of reactive inter-
mediates formed upon cleavage are extensions of this method-
ology currently under investigation in our laboratory.
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Scheme 4 Reagents and conditions: i, a-bromo-g-butyrolactone 10 eq,
K2CO3 16 eq, DMF, 60 °C, 18 h; ii, pyrrolidine/morpholine/1,2,3,4-tetra-
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Table 1 Yields and purities for carbonyl compounds prepared

a All compounds were characterised by 1H and 13C NMR, IR and HRMS.
HPLC purities (254 nm) are given in parentheses after chemical yields.
b Overall yield for 4 steps from 1. c Overall yield for 5 steps from 1.
d Obtained as a 6+1 mixture of ring-closed and ring-opened products.15
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