Expression of the prohelicity of bis-cyclomanganated 2,3-diphenylquinoxaline through reactions with diaryldiazomethanes \dagger

André de Cian, ${ }^{a}$ Jean-Pierre Djukic,*a Jean Fischer, ${ }^{a}$ Michel Pfeffer*a and Karl Heinz Dötz* ${ }^{*}$
${ }^{a}$ UMR 7513 CNRS, Université Louis Pasteur, 67070 Strasbourg, France.
E-mail: djukic@chimie.u-strasbg.fr; pfeffer@chimie.u-strasbg.fr
${ }^{b}$ Kekulé Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk str. 1, 53121 Bonn, Germany. E-mail: doetz@uni-bonn.de

Received (in Cambridge, UK) 20th December 2001, Accepted 7th February 2002
First published as an Advance Article on the web 25th February 2002

The reactions of bis-cyclomanganated 2,3-diphenylquinoxaline with diazodiphenylmethane and 9 -diazofluorene allowed the formation of a new oligomeric and dinuclear manganospiralene and the ready preparation of a pentacyclic helix comprising two ($\boldsymbol{\eta}^{5}$-fluorenyl) $\mathrm{Mn}(\mathrm{CO})_{3}$ fragments, whose helicity can be locked upon one-dimensional linear coordination to silver cation.

The conformational stability of helicenes depends mostly on the number of fused rings ${ }^{1}$ whose geometrical features contribute in defining the overall 'chirality'. ${ }^{2}$ Bis-cyclometallated 2,3-di-phenyl-substituted quinoxalines and pyrazines such as those studied by Steel and Caygill ${ }^{3}$ [$\left.\left.\mathrm{M}=\mathrm{Pd}(\mathrm{II})\right]\right]$ can be considered as dipallada-analogs of pentahelicenes as they possess the structural features of pentahelicenes, i.e. a low barrier to conformational change ${ }^{4}$ and the rich reactivity of the chelated metal centers. ${ }^{5}$ Helicity in the solid state stems from the steric repulsion existing between the two metallated phenyl groups connected at the 2 - and 3 -positions of the diaza-benzene ring. Such a chiral helical system is fluxional in solution and can be qualified as being 'prohelical' rather than strictly helical. We were interested in studying the stereochemical features of reactions occurring in the coordination sphere of each chelated metal in a such dinuclear substrate and in evaluating to what extent this intrinsic 'prohelicity' could be advantageously used in the stereoselective synthesis of polynuclear manganospiralenes. ${ }^{6}$

The reaction of 2,3-diphenylquinoxaline $\mathbf{1 a}^{7}$ with $\left(\mathrm{Ph}_{2} \mathrm{CH}_{2}\right) \mathrm{Mn}(\mathrm{CO})_{5}$ afforded the dinuclear complex 1b [eqn. (1)]. \dagger

Complex 1b reacted smoothly with an excess amount of $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ in a mixture of boiling toluene and heptane. The reaction product, $\mathbf{1 c}$, which was purified by conventional flash chromatography and recrystallised, was recovered as an air-

stable dark-blue powder (60% yield). The structure of this binuclear complex indicates clearly that the reaction of the two equivalents of $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ took place on opposite faces of the substrate 1b, in an expected anti-fashion with respect to the mean plane of the chelate (Fig. 1) \ddagger Two successive anti
\dagger Electronic supplementary information (ESI) available: preparation procedure and spectroscopic data for $\mathbf{1 b} \mathbf{b} \mathbf{d}$, crystal data for polymer 1e. See http://www.rsc.org/suppdata/cc/b1/b111570g
insertions of $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ in a $\mathrm{C}_{\mathrm{Ar}}-\mathrm{Mn}$ bond result in an increase of the torsion angle between the two phenyl groups and the heterocycle, thus yielding a much less sterically congested product 1c (Scheme 1). In complex 1c, the heterocycle is embedded between the two endo phenyl rings (Fig. 1). The stacking of the aromatic rings is characterised by interplanar angles of $c a .20^{\circ}$ and distances between centroids of vicinal rings of $c a .3 \cdot 4 \AA$. The phenylene rings are twisted by a value of $c a .50^{\circ}$ with respect to the central heterocycle, and are mutually involved in $\mathrm{CH}-\pi$ interactions ${ }^{8}$ through the hydrogen atoms located at C21 and C50 respectively.
Complex 1b reacted smoothly with 9 -diazofluorene in refluxing toluene to yield a new, stable bimetallic product 1d (79% yield) containing three 1,2 -disubstituted aromatics and

Fig. 1 ORTEP diagram of the structure of 1c drawn at the 30% probability level. Hydrogen atoms are omitted for clarity; selected bond lengths (\AA) and absolute torsion angle $\left({ }^{\circ}\right): \mathrm{Mn}(1)-\mathrm{N}(1) 2.057(3), \mathrm{Mn}(1)-\mathrm{C}(4)$ 2.161(4), $\mathrm{Mn}(1)-\mathrm{C}(17) \quad 2.203(3), \mathrm{Mn}(1)-\mathrm{C}(22) 2.401(3), \mathrm{Mn}(2)-\mathrm{N}(2)$ 2.043(3), $\mathrm{Mn}(2)-\mathrm{C}(33) 2.154(4), \mathrm{Mn}(2)-\mathrm{C}(46) 2.220(3), \mathrm{Mn}(2)-\mathrm{C}(51)$ 2.388(3); $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(52)-\mathrm{C}(51) 8.5$. Selected angles $\left({ }^{\circ}\right)$ between mean planes P_{1} (C34-C35-C36-C37-C38-C39), P2 (N1-C23-C52-N2-C25-C26-C27-C28-C29-C24), P_{3} (N1-C23-C52-N2-C25-C24) and P_{4} (C51-C50-C49-C48-C47-C46): $\mathrm{P}_{1}-\mathrm{P}_{2} 22.3, \mathrm{P}_{3}-\mathrm{P}_{4} 53.5$. Distance (\AA) between centroids, Cg_{n}, of planes $\mathrm{P}_{n}: \mathrm{Cg}_{1}-\mathrm{Cg}_{3}$ 3.43.

(a) unlikely $-\mathrm{CO} \quad$ (b) likely

$\mathrm{M}=\mathrm{Mn}, \mathrm{R}=\mathrm{Ph}$

Scheme 1 Two pathways in the sequential addition of $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ to $\mathbf{1 b}$.

Fig. 2 ORTEP diagram of the structure of 1d drawn at the 40% probability level. Hydrogen atoms and solvated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are omitted for clarity; selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Mn}(1)-\mathrm{C}(15) 2.147(8), \mathrm{Mn}(1)-\mathrm{C}(7)$ 2.190(7), $\mathrm{Mn}(1)-\mathrm{C}(14) 2.201(7), \mathrm{Mn}(1)-\mathrm{C}(13) 2.207(7), \mathrm{Mn}(1)-\mathrm{C}(12)$ $2.233(7) ; \quad \mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(7) \quad 105.5(6), \quad \mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13) \quad 110.5(6)$, $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12) \quad 106.8(7), \mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(7)$ 107.9(6). Angle $\left({ }^{\circ}\right)$ between mean planes $\mathrm{P}_{1}(\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 7)$ and $\mathrm{P}_{2}(\mathrm{C} 34-\mathrm{C} 35-\mathrm{C} 36-$ C37-C38-C39): 12.7(4). Distance (\AA) between centroids, Cg_{n}, of planes P_{n} : $\mathrm{Cg}_{1}-\mathrm{Cg}_{2} 3.70$.
two terminal (η^{5}-fluorenyl) $\mathrm{Mn}(\mathrm{CO})_{3}$ fragments. \dagger In agreement with analogous observations made for the reaction of XRe$(\mathrm{CO})_{3} \mathrm{~L}_{3}$ with $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2},{ }^{9}$ complex 1d likely results from the formal insertion of a fluorenylidene moiety into the $\mathrm{C}_{\mathrm{Ar}^{2}}-\mathrm{Mn}$ bond and a succession of subsequent haptotropic shifts that end by forming the final appended $\operatorname{bis}\left(\eta^{5}\right.$-fluorenyl) $\mathrm{Mn}(\mathrm{CO})_{3}$ complex (Scheme 2). The structure of $\mathbf{1 d}$ is helical in shape as a result of the compact arrangement of the three central 1,2-disubstituted aromatics (Fig. 2). The two $\mathrm{Mn}(\mathrm{CO})_{3}$ moieties point outwards to minimize steric interactions and allow stabilising intramolecular $\pi-\pi$ stacking.
The reaction of $\mathbf{1 d}$ with stoichiometric amounts of AgBF_{4} in acetone cleanly afforded a new bright red linear hybrid inorganic/organometallic polymer ${ }^{10}$ 1e (Scheme 2). \dagger Slow recrystallisation of a crude sample of $\mathbf{1 e}$ from a $\mathrm{THF}-\mathrm{MeOH}$ solution by diffusion in n-heptane afforded red crystals. X-Ray

Scheme $\mathbf{2}$ Reaction of $\mathbf{1 b}$ with 9-diazofluorene and reactivity of the product 1d towards coordination to Ag^{+}.
diffraction analysis showed that polymer 1e, spontaneously crystallises as a conglomerate in the non-centrosymmetric space group $P 2_{1} 2_{1} 2_{1}$. Similarly to $\mathbf{1 d}$, the pentacyclic ligand of the polymer 1e adopts a helical shape.
This study shows that bis-cyclomanganated 2,3-diphenyl-1,4-diazabenzene compounds, through exaltation of their intrinsic prohelicity, are convenient substrates for the stereoselective elaboration of helical molecules.
We thank the CNRS (France) and the DFG (Germany) for financial support.

Notes and references

\ddagger For compounds $\mathbf{1 c}-\mathbf{e}$, the intrinsic low quality of the analysed crystals yielded structures with poor resolution. Crystal data for $\mathbf{1 c}$: $\mathrm{C}_{52} \mathrm{H}_{32} \mathrm{Mn}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}, M=890.72$, monoclinic, $P 2_{1} / n, a=15.6887(7)$, $b=$ 16.7698(9), $c=15.9857(7) \AA, \beta=93.588(5)^{\circ}, V=4197.5(3) \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.41 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.657 \mathrm{~mm}^{-1}, F(000)=1824, \lambda(\mathrm{MoK} \alpha)=0.71073$ $\AA, T=294 \mathrm{~K}$, dark blue, dimensions $0.20 \times 0.14 \times 0.10 \mathrm{~mm}$. A total of 16708 reflections were collected with $2.5<\theta\left({ }^{\circ}\right)<27.51 . R=0.035, R_{\mathrm{w}}$ $=0.040, \mathrm{GOF}=1.040$, maximum residual electron density $0.289 \mathrm{e}_{\AA^{-3}}$ 3947 unique reflections had intensities $I>3 \sigma(I)$. CCDC reference number 176859
For 1d: $\mathrm{C}_{52} \mathrm{H}_{28} \mathrm{Mn}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=971.62$, orthorhombic, $P b c a, a=$ 14.8379(2), $b=35.4532(3), c=16.3322(5) \AA, V=8591.6(3) \AA^{3}, Z=8$, $D_{\mathrm{c}}=1.50 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.769 \mathrm{~mm}^{-1}, F(000)=3952, \lambda(\mathrm{MoK} \alpha)=0.71073$ $\AA, T=173 \mathrm{~K}$, yellow, dimensions $0.16 \times 0.13 \times 0.10 \mathrm{~mm}$. A total of 19157 reflections were collected with $2.5<\theta\left(^{\circ}\right)<27.48 . R=0.051, R_{\mathrm{w}}$ $=0.082, \mathrm{GOF}=1.415$, maximum residual electron density $0.589 \mathrm{e}^{-3}$ 3614 unique reflections had intensities $I>3 \sigma(I)$. CCDC reference number 176860
For 1e: $\mathrm{C}_{53} \mathrm{H}_{31} \mathrm{AgMn}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{BF}_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{OH}, M=1176.48$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=13.6186(5), b=15.1375(7), c=25.032(1) \AA, V=5160.5(4)$ $\AA^{3}, Z=4, D_{\mathrm{c}}=1.51 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.930 \mathrm{~mm}^{-1}, F(000)=2372, \lambda(\mathrm{MoK} \alpha)$ $=0.71073 \AA, T=173 \mathrm{~K}$, red, dimensions $0.12 \times 0.10 \times 0.08 \mathrm{~mm}$. A total of 11811 reflections were collected with $2.5<\theta\left({ }^{\circ}\right)<27.48 . R=0.058$ $R_{\mathrm{w}}=0.080, \mathrm{GOF}=1.513$, maximum residual electron density 0.959 e \AA^{-3}. 3656 unique reflections had intensities $I>3 \sigma(I)$. CCDC reference number 176861

See http://www.rsc.org/suppdata/cc/b1/b111570g/ for crystallographic data in CIF or other electronic format.

1 W. H. Laarhoven and W. J. C. Prinsen, in Stereochemistry, F. Vögtle and E. Weber, ed., Springer Verlag, Berlin, 1984, p. 63.
2 O. Katzenelson, J. Edelstein and D. Avnir, Tetrahedron Asymmetry, 2000, 11, 2695
3 P. J. Steel and G. B. Caygill, J. Organomet. Chem., 1990, 395, 359.
4 R. H. Janke, G. Haufe, E. U. Würthwein and J. H. Borkent, J. Am. Chem Soc., 1996, 118, 6031.
5 M. Pfeffer, Pure Appl. Chem., 1992, 94, 935; J. Spencer and M. Pfeffer Adv. Met.-Org. Chem., 1998, 6, 103; J. Dupont, M. Pfeffer and J Spencer, Eur. J. Inorg. Chem., 2001, 1917
6 J. P. Djukic, C. Michon, A. Maisse-François, R. Allagapen, M. Pfeffer K. H. Dötz, A. De Cian and J. Fischer, Chem. Eur. J., 2000, 6, 1064; J P. Djukic, A. Maisse-François, M. Pfeffer, K. H. Dötz, A. De Cian and J. Fischer, Organometallics, 2000, 19, 5484; J. P. Djukic, K. H. Dötz, M Pfeffer, A. De Cian and J. Fischer, Organometallics, 1997, 16, 5171; J. P. Djukic, A. Maisse, M. Pfeffer, K. H. Dötz and M. Nieger, Eur. J Inorg. Chem., 1998, 1781.
7 M. I. Bruce, B. L. Goodall and I. Matsuda, Aust. J. Chem., 1975, 28 1259.

8 Y. Umezawa, S. Tsuboyama, H. Takahashi, J. Uzawa and M. Nishio, Tetrahedron, 1999, 55, 10047
9 R. R. Cesati and J. A. Katzenellenbogen, J. Am. Chem. Soc., 2001, 123, 4093.

10 A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii, A G. Majouga, N. V. Zyk and M. Schröder, Coord. Chem. Rev., 2001, 222 155; M. Munakata, L. P. Wu and G. L. Ning, Coord. Chem. Rev., 2000 198, 171; B. Schmaltz, A. Jouaiti, M. W. Hosseini and A. De Cian, Chem. Commun., 2001, 1242; C. M. Fitchett and P. J. Steel, New J Chem., 2000, 24, 945; P. A. Maggard, C. L. Stern and K. R Poeppelmeier, J. Am. Chem. Soc., 2001, 123, 7742; S. A. Bourne, M Kilkenny and L. R. Nassimbeni, J. Chem. Soc., Dalton Trans., 2001 1176; A. J. Blake, N. R. Champness, A. N. Khlobystov, D. A. Lemenovskii, W. S. Li and M. Schröder, Chem. Commun., 1997 1339.

