# Synthesis and structural characterization of imido-lanthanide complexes with a metal-nitrogen multiple bond 

Hoi-Shan Chan, Hung-Wing Li and Zuowei Xie*<br>Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.E-mail: zxie@cuhk.edu.hk

Received (in Cambridge, UK) 26th November 2001, Accepted 8th February 2002
First published as an Advance Article on the web 27th February 2002

Treatment of an amido-ytterbium complex with $n$-BuLi leads to the isolation and structural characterization of a mixed amido-imido-ytterbium or imido-ytterbium complex, respectively, depending upon the molar ratios of the reactants; the $\mathbf{Y b}-\mathbf{N}$ distance and the linearity of the imido $\mathbf{N}$ atom strongly suggest the presence of a formal $\mathbf{Y b}=\mathbf{N}$ multiple bond in these novel complexes.

Imido-d-transition-metal complexes play an important role both in biological processes such as nitrogen fixation and in a series of industrial processes. ${ }^{1}$ Cycloadditions, C-H bond activations, and ring-opening polymerizations can all be catalyzed by various imido complexes. ${ }^{1-3}$ Numerous imido-d-transition-metal complexes have been reported; however, imido-lanthanide complexes are largely unexplored. ${ }^{1-4}$ Very recently, a samarium complex with a $\mathrm{Sm}=\mathrm{C}$ bond was communicated. ${ }^{5}$ Homoleptic complexes $\mathrm{Ln}\left[\mathrm{NPPh}_{3}\right]_{3}$ were also very recently reported to have $\mathrm{La}-\mathrm{N}$ multiple bonding for $\mathrm{Ln}=$ La with an average $\mathrm{La}-\mathrm{N}-\mathrm{P}$ angle of $166.0(5)^{\circ}$. This angle is dramatically reduced to only $158.3(3)^{\circ}$ when $\mathrm{Ln}=\mathrm{Yb},{ }^{6}$ suggesting that the lone pair of the nitrogen is mainly localized on the N itself. We report herein novel imido-ytterbium complexes with a linear $\mathrm{Yb}-\mathrm{N}-\mathrm{C}$ angle and a formal $\mathrm{Yb}=\mathrm{N}$ bond stabilized by sterically demanding 2,6-diisopropylphenyl groups.

Treatment of $\left(\operatorname{Pri}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}\right)_{2} \mathrm{Yb}\left(\mu-\mathrm{NHC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}\right)_{2} \mathrm{Na}(\mathrm{THF})$ (1) with 2 or 4 equiv. of $n$-BuLi in THF at room temperature gave the mixed amido-imido-ytterbium complex $\left\{\left(\operatorname{Pri}^{i} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}\right.\right.$ ) $\left.\left(\operatorname{Pri}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}\right) \mathrm{Yb}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{3} \operatorname{Pr}^{\mathrm{i}}{ }_{2}\right)\right\}_{2}\{[\mathrm{Li}(\mathrm{THF})][\mathrm{Na}(\mathrm{THF})]\}_{2}$ (2) or the imido-ytterbium complex $\left\{\left(\operatorname{Pr}^{i}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}\right)_{2} \mathrm{Yb}(\mu-\right.$ $\left.\left.\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}\right)\right\}_{2}\left\{\left[\mathrm{Li}_{2} \text { (THF) }\right][\mathrm{Na}(\mathrm{THF})]\right\}_{2}$ (3), respectively. $\dagger \mathbf{3}$ was also prepared by reaction of 2 with 2 equiv. of $n-\mathrm{BuLi}$, shown in Scheme 1. These complexes are extremely air- and moisture-sensitive but remain stable for months at room temperature under an inert atmosphere. All three new ytterbium complexes were fully characterized by various spectroscopic data, elemental analyses and X-ray diffraction studies. $\ddagger$

The solid-state structures of $\mathbf{2}$ and $\mathbf{3}$ are shown in Figs. 1 and 2 , respectively. Both $\mathbf{2}$ and $\mathbf{3}$ are dimeric complexes in which each $\mathrm{Yb}^{3+}$ ion bonds to four N atoms in a distorted-tetrahedral geometry. The two Yb and two doubly bridging N atoms are coplanar; the two terminal N atoms are $c a .0 .90 \AA$ in 2 or $c a$. $0.96 \AA$ in 3 above this plane and the other two are $c a .1 .63 \AA$ in 2 or $c a .1 .35 \AA$ in $\mathbf{3}$ below this plane. The relatively longer $\mathrm{Yb}-$ N (terminal) distances and smaller $\mathrm{C}-\mathrm{N}-\mathrm{Yb}$ angles in $\mathbf{2}$ suggest that both $\mathrm{N}(4)$ and $\mathrm{N}(5)$ are amido N atoms since the imido N atoms are superior to the amido ones in bonding with two lanthanide ions.
The most interesting structural features are the very short $\mathrm{Yb}-\mathrm{N}$ (imido) distances and very large $\mathrm{C}-\mathrm{N}$ (imido) -Yb angles.
lengthen the $\mathrm{Yb}-\mathrm{N}$ distances. The $\mathrm{Yb}-\mathrm{N}(3,6)-\mathrm{C}$ angles are $172.3(3)$ and $172.5(3)^{\circ}$ in 2, and the $\mathrm{Yb}-\mathrm{N}(2,3)-\mathrm{C}$ angles are $167.5(2)$ and $171.4(1)^{\circ}$ in 3 , respectively. The short $\mathrm{U}-\mathrm{N}$ distance and large $\mathrm{U}-\mathrm{N}-\mathrm{C}$ angle have been described as an indication of multiple bonding between uranium and nitrogen in imido-uranium complexes such as $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}(\mathrm{NPh})^{8}$ and $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right]_{3} \mathrm{U}(\mathrm{NPh}) \mathrm{F} .{ }^{9}$ The relatively short $\mathrm{Sm}-\mathrm{C}$ distance in $\left.\mathrm{Sm}\left\{\mathrm{C}\left(\mathrm{Ph}_{2} \mathrm{P}=\mathrm{NSiMe}\right)_{3}\right)_{2}\right\}\left\{\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}(\mathrm{THF})$ has been attributed to the presence of a $\mathrm{Sm}=\mathrm{C}$ bond. ${ }^{5,10}$ The very short $\mathrm{Yb}-\mathrm{N}$ distances and linear $\mathrm{Yb}-\mathrm{N}-\mathrm{C}$ angles in the imido complexes 2


Scheme 1


Fig. 1 ORTEP illustration of $\mathbf{2}$ with thermal ellipsoids drawn at the 35\% probability level (all H atoms and ${ }^{i} \mathrm{Pr}$ groups are omitted for clarity). Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right): ~ Y b 1-N 12.316(3), \mathrm{Yb} 1-\mathrm{N} 2$ 2.286(4), Yb1-N3 2.101(4), Yb1-N4 2.179(5), Yb2-N1 2.166(3), Yb2-N2 2.221(4), Yb2-N5 2.196(5), Yb2-N6 2.126(4), Yb1-N3-C25 172.3(3), Yb1-N4-C37 161.1(4), Yb2-N5-C49 150.6(3), Yb2-N6-C61 172.5(3).


Fig. 2 ORTEP illustration of $\mathbf{3}$ with thermal ellipsoids drawn at the 35\% probability level (all H atoms and ${ }^{i} \mathrm{Pr}$ groups are omitted for clarity). Selected bond lengths ( $\AA$ ) and angles $\left({ }^{\circ}\right)$ : Yb1-N1 2.304(2), Yb1-N1A 2.288(2), Yb1-N2 2.122(2), Yb1-N3 2.122(2), Yb1-N2-C13 167.5(2), Yb1-N3-C25 171.4(1).
and 3 strongly suggest the presence of multiple bonding between Yb and the imido N with the lone pairs of the nitrogen being presumably donated into metal d orbitals to form a formal $\mathrm{Yb}=\mathrm{N}$ bond.
We thank the Research Grants Council of the Hong Kong Special Administration Region (Project No. CUHK 4267/00P) and The Chinese University of Hong Kong Direct Grant (Project No. 2060187) for financial support.

## Notes and references

$\dagger$ Preparation of 1: a THF solution ( 5 mL ) of $\mathrm{NaNHC}_{6} \mathrm{H}_{3} \operatorname{Pr}^{\mathrm{i}}{ }_{2}(0.57 \mathrm{~g}, 2.86$ $\mathrm{mmol})$ was added to a suspension of $\mathrm{YbCl}_{3}(0.20 \mathrm{~g}, 0.71 \mathrm{mmol})$ in THF ( 10 mL ) at room temperature, and the reaction mixture was refluxed for 2 days. Removal of THF and hexane extraction ( $3 \times 10 \mathrm{~mL}$ ) gave a red solution from which 1 was isolated as red crystals upon evaporation ( $0.46 \mathrm{~g}, 67 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 8.19$ (br, aryl H), 3.56 (m, THF), 1.41 (m, THF), 0.51 (br, ${ }^{i} \mathrm{Pr}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 139.50,123.06,119.33,118.81$ (aryl C), $65.03,23.95(\mathrm{THF}), 29.40,28.09,22.53(\mathrm{iPr})$; IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $v 3054$ (w), 3024 (w), 2958 (s), 2872 (s), 1589 (s), 1419 (s), 1259 (s), 1046 (s), 842 (s). Anal. Calc. for $\mathrm{C}_{52} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{NaOYb}$ : C, 64.17; H, 8.28; N, 5.75. Found: C,
$63.86 ; \mathrm{H}, 8.54 ; \mathrm{N}, 5.52 \%, 2 \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ : A 0.16 M solution of $n$-BuLi in hexane ( $4.60 \mathrm{~mL}, 0.74 \mathrm{mmol}$ ) was slowly added to a THF solution ( 5 mL ) of $\mathbf{1}(0.36 \mathrm{~g}, 0.37 \mathrm{mmol})$, and the mixture was stirred at room temperature overnight. The solvents were removed under vacuum, and the residue was extracted with hexane $(3 \times 10 \mathrm{~mL})$. The hexane solutions were combined and concentrated to about 10 mL from which $\mathbf{2} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ was isolated as red crystals upon addition of a few drops of benzene ( $0.15 \mathrm{~g}, 46 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.92(\mathrm{br}, \operatorname{aryl} \mathrm{H}), 3.63(\mathrm{~m}, \mathrm{THF}), 1.63(\mathrm{~m}, \mathrm{THF}), 1.25\left(\mathrm{br},{ }^{\mathrm{i} P r}\right) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 160.30,130.74,122.84,106.29$ (aryl C), $68.39,26.36$ (THF), 27.50, 24.00, 14.95 (iPr); IR (KBr, $\mathrm{cm}^{-1}$ ): $v 3025$ (m), 2956 (s), 2870 (s), 1590 (s), 1458 (s), 1391 (s), 1252 (s), 1039 (s), 886 (s). Anal. Calc. for $\mathrm{C}_{72} \mathrm{H}_{104} \mathrm{Li}_{2} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{Yb}_{2}\left(2 \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}-4 \mathrm{THF}-0.5 \mathrm{C}_{6} \mathrm{H}_{6}\right): \mathrm{C}, 59.25 ; \mathrm{H}$, 7.18; N, 5.76. Found: C, 59.49 ; H, 6.90; N, $5.91 \%$. 3•0.5C $\mathrm{C}_{6} \mathrm{H}_{6}$ : A 0.16 M solution of $n-\mathrm{BuLi}$ in hexane ( $8.50 \mathrm{~mL}, 1.36 \mathrm{mmol}$ ) was slowly added to a THF solution ( 5 mL ) of $\mathbf{1}(0.33 \mathrm{~g}, 0.34 \mathrm{mmol})$ at room temperature, followed by procedures similar to those used in the synthesis of $\mathbf{2}$ affording $3 \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ as red crystals $(0.24 \mathrm{~g}, 78 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.62$ (br, aryl H), 3.49 (m, THF), 1.44 (m, THF), 1.10 (br, ${ }^{\mathrm{i} P r}$ ); ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $160.39,130.61,122.81,106.19$ (aryl C), 68.27, 26.24 (THF), 28.41, 23.94, 14.67 ( ${ }^{(P r}$ ); IR (KBr, cm ${ }^{-1}$ ): v 3033 (m), 2958 (s), $2870(\mathrm{~s}), 1620(\mathrm{~m}), 1583$ (s), 1458 (s), 1390 (s), 1318 (s), 1251 (s), 1043 (s), 747 (s). Anal. Calc. for $\mathrm{C}_{91} \mathrm{H}_{137} \mathrm{Li}_{4} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{4} \mathrm{Yb}_{2}$ : C, 60.76; H, 7.68; N, 4.67. Found: C, 60.69 ; H, 7.85 ; N, 4.52\%.
$\ddagger$ Crystal data: for 1: $\mathrm{C}_{52} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{NaOYb}, M=973.23$, monoclinic, space group $P 2_{1} / n, a=24.516(1), b=19.815(1), c=24.541(1) \AA, \beta=$ $117.68(1)^{\circ}, V=10557.3(9) \AA^{3}, D_{\mathrm{c}}=1.225 \mathrm{~g} \mathrm{~cm}^{-3}, Z=8,2 \theta_{\max }=50^{\circ}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.817 \mathrm{~mm}^{-1}, 58633$ reflections used, 18578 unique, $R_{1}=$ $0.043(I>2.0 \sigma(I)), w R_{2}=0.077$ on $F^{2}$. For $2 \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{C}_{91} \mathrm{H}_{139} \mathrm{Li}_{2} \mathrm{~N}_{6}-$ $\mathrm{Na}_{2} \mathrm{O}_{4} \mathrm{Yb}_{2}, M=1787.02$, monoclinic, space group $P 2_{1} / n, a=17.839$ (4), $b=22.603(5), c=25.919(5) \AA, \beta=93.75(3)^{\circ}, V=10428(4) \AA^{3}, D_{\mathrm{c}}=$ $1.138 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4,2 \theta_{\max }=50^{\circ}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.834 \mathrm{~mm}^{-1}, 11887$ reflections used, 11887 unique, $R_{1}=0.089(I>2.0 \sigma(I))$, $w R_{2}=0.223$ on $F^{2}$. For 3.0.5 $\mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{C}_{91} \mathrm{H}_{137} \mathrm{Li}_{4} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{4} \mathrm{Yb}_{2}, M=1798.89$, orthorhombic, space group Pbcn, $a=17.912(4), b=25.454(5), c=22.850(5) \AA, V=$ $10418(4) \AA^{3}, D_{\mathrm{c}}=1.147 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4,2 \theta_{\max }=50^{\circ}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.836$ $\mathrm{mm}^{-1}, 18983$ reflections used, 6245 unique, $R_{1}=0.071(I>2.0 \sigma(I)), w R_{2}$ $=0.177$ on $F^{2}$. Data were collected at 293 K on a Bruker SMART 1000 CCD diffractometer using $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. An empirical correction was applied using the SADABS program. ${ }^{11}$ All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all non-hydrogen atoms by full-matrix least squares calculations on $F^{2}$ using the SHELXTL program package. ${ }^{12}$ CCDC reference numbers 175639-175641. See http://www.rsc.org/suppdata/cc/ b1/b110793c/ for crystallographic data in CIF or other electronic format.

1 D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239.
2 V. C. Gibson, Adv. Mater., 1994, 6, 37.
3 R. R. Schrock, Acc. Chem. Res., 1990, 23, 158.
4 M. H. Chisholm and I. P. Rothwell, in Comprehensive Coordination Chemistry, ed. G. Wilkinson, R. D. Gillardand J. A. McCleverty, Pergamon Press, Oxford, UK, 1987, vol. 2, p. 162; W. J. Evans, M. A Ansari, J. W. Ziller and S. I. Khan, Inorg. Chem., 1996, 35, 5435.
5 K. Aparna, M. Ferguson and R. G. Cavell, J. Am. Chem. Soc., 2000, 122, 726
6 T. Gröb, G. Seybert, W. Massa, F. Weller, R. Palaniswami, A. Greiner and K. Dehnicke, Angew. Chem., Int. Ed., 2000, 39, 4373.
7 S. Anfang, T. Gröb, K. Harms, G. Seybert, W. Massa, A. Greiner and K. Dehnicke, Z. Anorg. Allg. Chem., 1999, 625, 1853.
8 J. G. Brennan and R. A. Andersen, J. Am. Chem. Soc., 1985, 107 514.

9 C. J. Burns, W. H. Smith, J. C. Huffman and A. P. Sattelberger, J. Am Chem. Soc., 1990, 112, 3237.
10 It is noted that the $\mathrm{Sm}=\mathrm{C}$ double bond distance of $2.467(4) \AA$ in $\left.\mathrm{Sm}\left\{\mathrm{C}\left(\mathrm{Ph}_{2} \mathrm{P}=\mathrm{NSiMe}\right)_{3}\right)_{2}\right\}\left\{\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}(\mathrm{THF})^{5}$ is almost identical to the $\mathrm{Sm}-\mathrm{C}$ single bond distance of $2.464(14) \AA$ in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Sm}\left(\mathrm{CH}_{3}\right)(\mathrm{THF})$ ( W. J. Evans, L. R. Chamberlain, T. A. Ulibarri and J. W. Ziller, J. Am. Chem. Soc., 1988, 110, 6423), which indicates that bond distance is not the only criterion for distinguishing multiple bonding from single $\sigma$ bonding in lanthanide chemistry.
11 G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data, University of Göttingen, Germany, 1996.
12 G. M. Sheldrick, SHELXTL 5.10 for Windows NT, structure determination software programs, Bruker Analytical X-ray systems, Inc., Wisconsin, USA, 1997.

