Studies in 3-oxy-assisted 3-aza Cope rearrangements†

Mário J. S. Gomes, Lalit Sharma, Sundaresan Prabhakar,* Ana M. Lobo* and Paulo M. C. Glória (in part)

Secção de Química Orgânica Aplicada, Departamento de Química, CQFB-REQUIMTE, and, SINTOR-UNINOVA, campus FCT-UNL, Quinta da Torre, 2829 Monte de Caparica, Portugal. E-mail: sp@dq.fct.unl.pt

Received (in Cambridge, UK) 15th January 2002, Accepted 21st February 2002 First published as an Advance Article on the web 11th March 2002

On thermolysis appropriately substituted *N*-silyloxy-*N*-allyl enamines undergo smooth 3,3-sigmatropic rearrangments to the corresponding *N*-silyloxy imino ethers.

Cope rearrangement is an important reaction in organic synthesis. This pericyclic process involving 1,5-hexadienes generally proceeds under drastic conditions (*i.e.* high temperatures and prolonged reaction times) and in poor to modest yield¹ [eqn. (1); **1a** to **2a**]. The 3-aza analogue of the above reaction involving uncharged molecules, first reported by Hill,² also requires high temperatures for the rearrangements to occur [eqn. (1); **1b** to **2b**]. Although the presence of an ether functionality

$$R_3$$
 R_1
 R_5
 R_4
 R_5

a) $X = CH_2$ b) X = NR c) X = CHOR d) $X = NOSiMe_2CMe_3$

at C-3 [eqn. (1); **1c** to **2c**] in the all carbon framework has been found to improve the overall efficiency of the process,³ the effect of such a substituent in the 3-aza version is so far not reported. We disclose in this communication the first experimental realisation with the latter type of functionality which consists of thermolysis of a number of *N*-silyloxy-*N*-allyl enamines [eqn. (1); **1d** to **2d**] and show that the corresponding 3,3-sigmatropic rearrangement products, the oxime-ethers **2d**, are obtained in good to excellent yields.

O-Silyl-*N*-allyl hydroxylamines were secured as follows: the appropriate allyl alcohol **3** and *N*,*O*-bis-tert-butoxycarbonyl hydroxylamine (**4**) were condensed by Mitsunobu's method⁴ to give the corresponding *N*-allyl-*O*-acyl hydroxamic acid **5** (Scheme 1). Removal⁵ of the protecting groups from these

$$R_3$$
 R_1
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_7
 R_8
 R_8
 R_9
 R_9

TBDMS = $SiMe_2CMe_3$

Scheme 1 Reagents and conditions: i, diisopropylazodicarboxylate, PPh₃; THF, rt; ii, CF₃CO₂H (4 eq.), CH₂Cl₂, rt; iii, TBDMSCl, imidazole, DMF, rt; iv, HC≡CR₅ (1 eq.), CH₃CN or CH₂Cl₂, rt.

substances provided the corresponding hydroxylamines. *O*-Silylation⁶ of the latter furnished the title compounds **6**. They underwent nucleophilic addition smoothly⁷ to ethynyl-*p*-tolylsulfone and methyl propiolate to provide the *N*-silyloxy-*N*-allyl enamines **1d** required for our study (Scheme 1, Table 1).‡

Table 1 Michael addition products **1d** from *O*-silyl hydroxylamines **6**

#	Allyl alcohol 3	O-Silyl hydroxyl- amine 6 yield ^a (%)	1,4-Addition product 1d ^b	Yield ^a (%)		
1	$R_1 = R_2 = R_3 = H$	63	$R_5 = SO_2Tol$	70		
2	$R_1 = R_3 = H; R_2 = Me$	60	$R_5 = SO_2Tol$	72		
3	$R_2 = R_3 = H; R_1 = Me$	58	$R_5 = SO_2Tol$	76		
4	$R_1 = R_2 = H; R_3 = Me$	24	$R_5 = SO_2Tol$	78		
5	$R_1 = R_3 = H; R_2 = Ph$	62	$R_5 = SO_2Tol$	77		
6	$R_2 = R_3 = H; R_1 = Ph$	87	$R_5 = SO_2Tol$	75		
7	$R_1 = R_2 = R_3 = H$	63	$R_5 = CO_2Me$	70		
a Isolated yields. b R ₄ = H , Tol = p -MeSO ₂ C ₆ H ₄						

The thermal rearrangements of the above substances were conducted in *o*-dichlorobenzene under reflux (188 °C) (*ca.* 0.03 M) and the results are collected in Table 2.§

Examination of the Table shows that the reactions occur in consistently good yield to provide the oxime ethers 2d as a mixture of the *syn* and *anti* isomers. Under virtually identical experimental conditions the cyclohexyl enamines 1b (R = cyclohexyl; $R_1 = R_2 = R_3 = R_4 = H$; $R_5 = SO_2Tol$ or $R_1 = R_2 = R_3 = R_4 = H$; $R_5 = CO_2Me$) showed no tendency to undergo the aza-Cope reaction, underlining the importance of the silyloxy group in promoting the rearrangement.

The occurrence of 1,3-shifts in these reactions is excluded because of the presence of the characteristic 2H multiplet due to H_2 C=CH group in the 1 H NMR spectra of the products **2d** (Table 2; entries 3 and 6) centred at ca. δ 5.0 ppm and the absence of the same in that of **2d** (entry 4). In those reactions, wherein two stereogenic centres are created in the products (Table 2; entries 3 and 6), high diastereoselection was observed. The oxime pair, in each case, contained one predominant diastereomer (>80% by 1 H NMR analysis).

Table 2 Rearrangement of N-silyloxy enamines 1d to oxime ethers 2d

#	Enamine 1d	Reaction Time (min)	Oxime ether 2d yield ^a (%)	Ratio syn: antib			
1	$R_1 = R_2 = R_3 = H; R_5 = SO_2Tol$	80	82	63:37			
2	$R_1 = R_3 = H; R_2 = Me; R_5 = SO_2Tol$	70	81	82:18			
3	$R_2 = R_3 = H; R_1 = Me; R_5 = SO_2Tol$	165	79	50:50			
4	$R_1 = R_2 = H; R_3 = Me; R_5 = SO_2Tol$	25	80	50:50			
5	$R_1 = R_3 = H; R_2 = Ph; R_5 = SO_2Tol$	15	80	99:1			
6	$R_2 = R_3 = H$; $R_1 = Ph$; $R_5 = SO_2Tol$	240	78	37:63			
7	$R_1 = R_2 = R_3 = H; R_5 = CO_2Me$	60	80	60:40			
a I	^a Isolated yields. ^b By ¹ H NMR (see, ref. 8).						

[†] Dedicated with respect to the late Professor T. R. Govindachari.

In conclusion, the first examples of 3-silyloxy-assisted 3-aza Cope reactions are reported. They are shown to occur in good to excellent yields.

We thank Fundação para a Ciência e a Tecnologia (FC&T, Portugal) for financial support (Project POCTI/QUI/36456) and Dr S. N. Swami (Pfizer, UK) for the interest shown. Two of us, M. J. S. G. and L. S., are grateful for the award of a doctoral and a postdoctoral fellowship respectively, from FC&T.

Notes and references

- \ddagger All addition products **1d** were deduced (¹H NMR) to possess the *trans* arrangement of the olefinic bond bearing the electron withdrawing group R_5 .
- § Typical experimental procedure: *trans*-1-*N*-allyl-*N*-(*tert*-butyldimethylsi-lyloxy)amino-2-(*p*-tolylsulfonyl)ethylene (**1d**, Table 2, entry 1) (25 mg), in *o*-dichlorobenzene (2 mL), was heated under reflux until all the starting material had been consumed (80 min) (tlc control, silica, Et₂O:*n*-hexane 1:3, as eluent). Evaporation of the solvent under reduced pressure, followed by purification of the residue by ptlc, gave the product, a viscous oil (20.5 mg, 82% yield), as a mixture of *syn* and *anti* oxime-ethers (**2d**, Table 2, entry 1). Selected spectroscopic data: IR (neat) 1642, 1597, 1325, 1252,

 $1151\ cm^{-1};\ ^1H$ NMR (400 MHz, CDCl_3): 2.42 and 2.43 (3H, two s), 4.90–5.15 (2H, m), 6.82 and 7.36 (1H, two d).

- A. C. Cope and E. M. Hardy, J. Am. Chem. Soc., 1940, 62, 441; H. Levy and A. C. Cope, J. Am. Chem. Soc., 1944, 66, 1684.
- 2 R. K. Hill and N. W. Gilman, *J. Chem. Soc.*, *Chem. Commun.*, 1967, 619; R. K. Hill and N. W. Gilman, *Tetradedron Lett.*, 1967, **15**, 1421. For a review, see: R. P. Lutz, *Chem. Rev.*, 1984, **84**, 205. For examples of asymmetric 3-aza Cope rearrangements, see: D. Enders, M. Knopp and R. Schiffers, *Tetrahedron: Asymmetry*, 1996, **7**, 1847.
- 3 J. A. Berson and E. J. Walsh, J. Am. Chem. Soc., 1968, 90, 4729; Y. Fujita, T. Onishi and T. Nishida, Synthesis, 1978, 934.
- 4 A. O. Stewart and D. W. Brooks, J. Org. Chem., 1992, 57, 5020.
- 5 R. D. Connell, T. Rein, B. Akermark and P. Helquist, J. Org. Chem., 1988, 53, 3845.
- 6 J. C. Gilbert and K. R. Cousins, *Tetrahedron*, 1994, **50**, 10671; E. J. Corey and A. Venkateswarlu, *J. Am. Chem. Soc.*, 1972, **94**, 6190.
- 7 W. E. Truce and D. G. Brady, J. Am. Chem. Soc., 1966, 31, 3543.
- 8 R. M. Silverstein, *Spectrometric Identification of Organic Compounds*, 6th Edition; John Wiley and Sons, Chichester, UK, 1998, p. 210 (values of δ 7.25 and 6.65 attributed respectively to the imino proton RC*H* = NOH of the *syn* and *anti* aldoximes).