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The X-ray structure of a diacetal with a 16-membered
macrocyclic loop, which was obtained as a product of the
condensation of methyl a-D-mannopyranoside and
1,4-bis(2-formylphenoxy)butane is presented together with
polymeric compounds resulting from polycondensation; a
similar polymer was formed in the reaction of methyl
2,3:4,6-di-O-salicylidene-a-D-mannopyranoside with
1,4-dibromobutane.

Over the past two decades numerous macrocycles have been
synthesized, with much attention focused on the systems
derived from carbohydrates.1 The sources of chiral crowns2 and
cryptands3,4 are monosaccharide derivatives, frequently methyl
4,6-O-benzylidene-a-gluco-, a-D-galacto- and a-D-mannopyr-
anosides. Chiral crown ethers and cryptands originating from
derivatives of the methyl hexopyranoside residue were found to
show chiral recognition of primary amine5,6 and aminoester
salts.7-9 Kakuchi et al.10 described syntheses of chiral poly-
(crown ether)s via cyclopolymerization of divinyl ethers
containing altro- galacto-, gluco- and mannopyranoside moie-
ties. The enantioselective transport of methyl esters of phenyl-
glycine and phenylalanine through bulk and solution of chiral
polymers10 was examined.

Recently, our investigations have been focused on poly-
acetals derived from methyl a-D-mannopyranoside 1 and
dialdehyde.11 The polycondensation of 1 with terephthaldehyde
under selected reaction conditions gave polymers with molec-
ular weights ranging from 1000 to 7000 g mol21. It has been
confirmed that the polymer chain is constructed of cyclic (5-
and 6-membered) acetal rings of dialdehyde and 1. Their
transformation into polyesters was achieved in the oxidation
reaction with N-bromosuccinimide.11

In this paper we report the synthesis, structure and spectro-
scopic data of the products formed in the acetalation of 1 with
salicyldehyde 2 or 1,4-bis(2-formylphenoxy)butane 3. The
condensation or polycondensation of 1 with 3 was performed in
solution in the presence of a catalytic amount of toluene-p-

sulfonic acid. If the molar ratio of co-monomers was 1+1, the
major product12 was cyclic diacetal 5 (57% yield) and polymer
6. Evidence for the cyclic diacetal compound 5 is demonstrated
in the NMR spectra. The characteristic signals due to methoxy
protons at 3.41 ppm, acetal protons in the region of 5.89 and
6.54 ppm and aromatic protons at 6.55–7.02, 7.2–7.50 and
7.50–7.52 ppm, which exist in the ratio 3+2+8 respectively,
confirmed that the condensation product 5 consists of two cyclic
acetal rings bridged by a di-O-[2,2A(1,4-butoxy)]phenylidene
unit. Although the spectral and analytical data were generally
consistent with compound 5, its structure could be determined
unambiguously by X-ray crystallographic analysis. These X-ray
studies of 5 are to our knowledge, the first analysis report of a
cyclic diacetal of methyl a-D-mannopyranoside with a 16-mem-
bered macrocyclic loop.

The asymmetric part of the unit cell contains two symmetry-
independent molecules; one of them is slightly disordered in the
alkyl chain, refined in two positions. As is depicted in Fig. 1,
compound 5†‡ adopts a trans-decaline-like conformation
which places the phenoxy group attached to the 1,3-dioxane
ring in an equatorial orientation. The conformation of the five-
membered 1,3-dioxolane rings is different in the two symmetry-
independent molecules: in one of the molecules it is close to an
envelope, while in the other—to a distorted half-chair. Both

Scheme 1 Synthesis of macrocyclic and polymeric compounds.

Scheme 2 Alternative synthetic path of polycondensation.

Fig. 1 Molecular structure of one of the two independent molecules of 5
(40% displacement ellipsoids).
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symmetry-independent molecules are H-endo isomers [at C(7)].
Similar isomers13 of benzylidene-, alkenylidene-acetals of 1
have been reported. The macrocyclic 16-membered ring can be
expected to accommodate small molecules. Its diagonals
(defined by the O…O distances) range from 4.646(4) to
4.847(4) Å. The macrocyclic 16-membered loop confines a bent
tetragon of shape close to a trapezium with the sides:
O(7a)…O(8a): 4.435(4); O(4a)…O(3a): 3.057(4);
O(7a)…O(4a): 3.059(4); O(8a)…O(3a): 2.963(4) Å.

The oligomer and polymer fractions were obtained by two
alternative synthetic paths. The acetalation of 1 with salicy-
laldehyde 2 under acid-catalysed (PVP–TsOH) conditions
yields a mixture of diastereoisomers at the acetal position of
1,3-dioxolane rings (in approximately equal amounts).14 Alka-
line-catalysed condensation of methyl 2,3:4,6-di-O-salicyli-
dene-a-D-mannopyranoside14 4 with 1,4-dibromobutane under
standard conditions (K2CO3)15 in butyl acetate gave the
expected polycondensates in high yield (87%). A small amount
of 5 (5%) was also isolated after flash column chromatography
purification. The evidence for polymer 6 was confirmed by SEC
analysis (Mn = 800–2100 g mol21). The NMR data of polymer
6 have been used to establish the configuration of a five-
membered acetal ring at C(2) and C(3) of the methyl a-D-
mannopyranoside units in the polymer chain. The 1H-NMR
spectrum of 6 consists of several sets of bands produced by
acetal protons at 5.4–5.6 and 5.8–6.0 ppm (1,3-dioxane),
6.1–6.2 ppm (H-2 exo 1,3-dioxolane) and 6.4–6.6 ppm (H-endo
1,3-dioxolane). The relative intensities of endo-H and exo-H (in
the 1,3-dioxolan-2yl ring) were 2+1. The characteristic signals
of methoxy, acetal and aromatic protons provide evidence that
the repeating units in the polymer chain consist of one molecule
of 1 and one of 3.

The formation of the macrocycle 5 and polymer 6 can be
discussed on the basis of the dynamic chemistry.16,17 Direct
acid-catalysed acetalation of two bifunctional building blocks 1
and 3 is driven to macrocycle 5 (57% yield) and polymer 6.
Macrocycle formation was efficient under thermodynamic
conditions, whereas the polymer was formed under kinetically
controlled conditions which led to mixture of exo-H and endo-H
(in 1,3-dioxolane) units.

Further investigations are in progress in order to confirm the
binding selectivity of methyl a-D-mannopyranoside with 1,w-
dialdehyde in the formation of macrocyclic diacetals and new
class of sugar polymers.
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