Palladium dimethylsilanedithiolato complex: a precursor for $\mathbf{T i}-\mathbf{P d}$ and $\mathbf{T i}-\mathrm{Pd}_{2}$ heterometallic complexes \dagger

Takashi Komuro, ${ }^{a}$ Tsukasa Matsuo, ${ }^{b}$ Hiroyuki Kawaguchi*b ${ }^{*}$ and Kazuyuki Tatsumi ${ }^{a}$
${ }^{a}$ Research Center for Materials Science, and, Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
${ }^{b}$ Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan. E-mail: hkawa@ims.ac.jp

Received (in Cambridge, UK) 15th February 2002, Accepted 21st March 2002
First published as an Advance Article on the web 8th April 2002

The silanedithiolato complex $\mathrm{Pd}\left(\mathrm{S}_{2} \mathrm{SiMe}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2} 1$ reacted with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{3}$ and $\mathrm{TiCl}_{4}(\mathrm{thf})_{2}$ to produce the heterometallic clusters $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}(\mu-\mathrm{S})_{2} \mathrm{Pd}\left(\mathrm{PEt}_{3}\right)_{2} \quad 2$ and $\mathrm{TiCl}_{2}(\mathrm{~S})\left(\mu-\mathrm{S}_{2} \mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{4} 3\right.$ along with silicon-sulfur bond cleavage, respectively.

The bis-silylated sulfides $\left(\mathrm{R}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{~S}$ have been widely used to prepare a variety of metal sulfide clusters, because these reagents exploit the strength of the $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{Cl}$ bond to replace a halide, alkoxide, acetate or oxide with a sulfido ligand under very mild and controlled conditions. Therefore, a metalsilanethiolato complex (e.g., $\mathrm{M}-\mathrm{SSiR}_{3}$) would be expected to serve as a synthetic precursor of homo- and hetero-metallic sulfido clusters. ${ }^{1}$ However, compounds containing the silanethiolato ligand are less common compared with alkylthiolato complexes. ${ }^{2,3}$ Herein we report the synthesis of a palladium dimethylsilanedithiolato complex and its cluster forming reactions with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{3}$ and $\mathrm{TiCl}_{4}(\mathrm{thf})_{2}$.
Reaction of palladium(II) acetate with 1 equiv of cyclotrisilathiane in the presence of triethylphosphine resulted in formation of the dimethylsilanedithiolato complex $\mathrm{Pd}\left(\mathrm{S}_{2} \mathrm{SiMe}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2} 1$ (Scheme 1), which was isolated as yellow crystals in 88% yield. \ddagger The compound is characterized by analytical, spectroscopic, and crystallographic methods. In the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the signal due to the silanedithiolato ligand appears as a triplet at $\delta 36.1\left({ }^{3} J_{\mathrm{SiP}} 2 \mathrm{~Hz}\right)$. This resonance is shifted to a lower field than that of cyclotrisilathiane (δ 21.4). Compound 1 consists of a chelating $\mathrm{S}_{2} \mathrm{SiMe}_{2}{ }^{2-}$ ligand and two phosphine ligands arranged in a square planar structure (Fig. 1).§ The $\mathrm{Pd}-\mathrm{S}(1)-\mathrm{Si}-\mathrm{S}(2)$ ring is planar, and this coordination geometry is similar to that found in $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Ti}\left(\mathrm{S}_{2} \mathrm{SiMe}_{2}\right) .^{2}$ The $\mathrm{Pd}-\mathrm{S}$ distances of 2.362(1) and 2.392(1) \AA are at the longer end of the range for palladium(II) thiolato complexes ($2.25-2.37 \AA$). ${ }^{4}$
The ability of $\mathbf{1}$ to serve as a precursor for the formation of heterometallic complexes was investigated through its reactions

Scheme 1 Reagents and conditions: i, PEt_{3}, toluene; ii, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{3}(1$ equiv.), toluene; iii, $\mathrm{TiCl}_{4}(\text { (thf })_{2}$ (0.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}$ to room temperature.

[^0]

Fig. 1 Molecular structure of 1. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Pd}-\mathrm{S}(1) 2.362(1), \mathrm{Pd}-\mathrm{S}(2)$ 2.392(1), $\mathrm{S}(1)-\mathrm{Si} 2.099(1), \mathrm{S}(2)-\mathrm{Si}$ 2.108(1), $\mathrm{Pd}-\mathrm{P}(1) 2.304(1), \mathrm{Pd}-\mathrm{P}(2) 2.290(1) ; \mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(2) 85.80(3)$, $\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$ 98.09(3).
with titanium compounds. Treatment of $\mathbf{1}$ with 1 equiv. of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{3}$ in toluene gave $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}(\mu-\mathrm{S})_{2} \mathrm{Pd}\left(\mathrm{PEt}_{3}\right)_{2} \mathbf{2}$ as yellow plates in 71% isolated yield. \ddagger In contrast, $\mathbf{1}$ did not react with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$. This is presumably due to electronic factors of the two ancillary ligands bonded to the titanium centre. Compound 2 is very soluble in THF and toluene but only slightly soluble in hexane. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 displays a 1:2 ratio for the $\mathrm{C}_{5} \mathrm{H}_{5}$ and PEt_{3} ligands, and the SiMe_{2} proton resonance of $\mathbf{1}(\delta 0.57)$ is absent in the spectrum of compound 2.

The molecular structure of $\mathbf{2}$ is determined by X-ray analysis (Fig. 2).§ The two metal centres are linked by two μ-sulfido ligands. The geometry around the palladium atom is squareplanar with two sulfido and PEt_{3} ligands, while the titanium

Fig. 2 Molecular structure of 2. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Ti}-\mathrm{Pd} 3.014(1)$, $\mathrm{Ti}-\mathrm{S}(1) 2.224(1), \mathrm{Ti}-\mathrm{S}(2) 2.222(1)$, $\mathrm{Ti}-\mathrm{Cl}$ 2.336 (1), $\mathrm{Pd}-\mathrm{S}(1) 2.356(1), \mathrm{Pd}-\mathrm{S}(2) 2.381$ (1), $\mathrm{Pd}-\mathrm{P}(1) 2.322(1), \mathrm{Pd}-\mathrm{P}(2)$ $2.313(1) ; \mathrm{S}(1)-\mathrm{Ti}-\mathrm{S}(2) 100.71(4), \mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(2) 92.59(5)$, $\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$ 100.74(4), Ti-S(1)-Pd 82.24(6), Ti-S(2)-Pd 81.72(3).
centre adopts a three-legged piano stool arrangement by coordination to a $\mathrm{C}_{5} \mathrm{H}_{5}$, a Cl , and two sulfido ligands. The Ti-Pd distance of $3.014(1) \AA$ is long, but it is still in the range where a weak Ti-Pd dative interaction is possible. ${ }^{5}$ The presence of a Ti-Pd bond is consistent with the puckered $\mathrm{TiS}_{2} \mathrm{Pd}$ quadrilateral. The magnitude of the puckered angle (18.9°) is typical of binuclear μ-sulfur complexes with a metal-metal bond. ${ }^{5,6}$ The Pd-S distances (av. $2.369 \AA$) are similar to those of $\mathbf{1}$, and the $\mathrm{S}-\mathrm{Pd}-\mathrm{S}$ angle of $\mathbf{2}$ is increased. The strong donor ability of the sulfido ligand elongates the $\mathrm{Pd}-\mathrm{P}$ distances of $\mathbf{2}$ as compared to those of $\mathbf{1}$.
A different type of heterometallic cluster was synthesized by the reaction of $\mathbf{1}$ with $\mathrm{TiCl}_{4}(\text { thf })_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This compound $\mathbf{3}$ was obtained as an orange powder in 84% by addition of $\mathrm{Et}_{2} \mathrm{O}$, and its empirical formula, $\mathrm{TiCl}_{2}(\mathrm{~S})\left(\mu-\mathrm{S}_{2} \mathrm{Pd}_{2}\left(\mathrm{PEt}_{3}\right)_{4}\right.$, was confirmed by elemental analysis. The X-ray crystal structure of 3 reveals a TiPd 2 triangle core capped by two μ_{3}-sulfido ligands (Fig. 3).§ Each palladium centre assumes a square-planar geometry. The titanium atom is in a square-pyramidal environment with the terminal sulfido ligand occupying the axial coordination site and the titanium atom located above the basal square plane ($0.68 \AA$ above the mean plane). The terminal $\mathrm{Ti}=\mathrm{S}$ bond of $2.117(1) \AA$ is shorter than the corresponding bonds of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ti}(\mathrm{S})\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left[2.217(1) \AA{ }_{\mathrm{A}}{ }^{2}{ }_{7} \mathrm{Na}_{2}\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ti}(\mu-\mathrm{S})(\mathrm{S})\right]_{2}\right.$ $\left[2.187(1), 2.202(1) \AA{ }^{\circ}\right],{ }^{8}$ and $\left[\mathrm{PhC}\left(\mathrm{NSiMe}_{3}\right)_{2}\right]_{2} \mathrm{Ti}(\mathrm{S})\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ $\left[\begin{array}{lll}{[2.139(1)} & \AA\end{array}\right]^{9}$ but is similar to that of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Ti}(\mathrm{S}) \mathrm{Cl}_{4}\right]$ [2.111(2) A]. ${ }^{10}$ The IR spectrum of $\mathbf{3}$ exhibits a band at 531 cm^{-1} assignable to a $\mathrm{Ti}=\mathrm{S}$ stretching vibration, which is comparable to those reported for $\left[\mathrm{PhC}\left(\mathrm{NSiMe}_{3}\right)_{2}\right]_{2}-$ $\mathrm{Ti}(\mathrm{S})\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \quad\left(520 \mathrm{~cm}^{-1}\right)^{9}$ and $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Ti}(\mathrm{S}) \mathrm{Cl}_{4}\right] \quad(530$ $\left.\mathrm{cm}^{-1}\right) .{ }^{10}$ The Ti-Pd distances are substantially longer than that of $\mathbf{2}$, and the $\mathrm{Pd}-\mathrm{Pd}$ separation $[3.315(1) \AA$] is too long to form a metal-metal bond. The shorter Ti-Pd distances relative to the $\mathrm{Pd}-\mathrm{Pd}$ distance is reflected in angles at the μ_{3}-sulfur atoms. The Ti-S-Pd angles are smaller than the $\mathrm{Pd}-\mathrm{S}-\mathrm{Pd}$ angles. Although the molecular structure of $\mathbf{3}$ is unsymmetrical in crystals, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3} at room temperature displays one resonance at $\delta 19.0$. Thus the cluster structure is fluxional in solution.
In conclusion, the novel silanethiolato complex $\mathbf{1}$ has been readily prepared by using cyclotrisilathiane. The formation of $\mathbf{2}$

Fig. 3 Molecular structure of 3. Selected interatomic distances (\AA) and angles (${ }^{\circ}$: $\mathrm{Ti}-\mathrm{Pd}(1) 3.130(1), \mathrm{Ti}-\mathrm{Pd}(2) 3.185(1), \mathrm{Pd}(1)-\mathrm{Pd}(2) 3.315(1), \mathrm{Ti}-$ $\mathrm{S}(1)$ 2.117(1), Ti-S(2) 2.451(1), Ti-S(3) 2.470(1), $\mathrm{Pd}(1)-\mathrm{S}(2)$ 2.357(1), $\mathrm{Pd}(1)-\mathrm{S}(3) 2.356(1), \mathrm{Pd}(2)-\mathrm{S}(2) 2.345(1), \mathrm{Pd}(2)-\mathrm{S}(3) 2.349(1), \operatorname{Pd}(1)-\mathrm{P}(1)$ $2.311(1), \operatorname{Pd}(1)-\mathrm{P}(2) 2.300(1), \mathrm{Pd}(2)-\mathrm{P}(3) 2.299(1), \mathrm{Pd}(2)-\mathrm{P}(4) 2.312(1) ;$ $\mathrm{Ti}-\mathrm{S}(2)-\mathrm{Pd}(1) 81.42(4), \mathrm{Ti}-\mathrm{S}(3)-\mathrm{Pd}(1) 80.83(4), \mathrm{Ti}-\mathrm{S}(2)-\mathrm{Pd}(2) 83.19(3)$, $\mathrm{Ti}-\mathrm{S}(3)-\mathrm{Pd}(2) \quad 82.69(4), \mathrm{Pd}(1)-\mathrm{S}(2)-\mathrm{Pd}(2) \quad 89.91(3), \mathrm{Pd}(1)-\mathrm{S}(3)-\mathrm{Pd}(2)$ 89.58(4).
and $\mathbf{3}$ under a mild condition demonstrates that the $\mathrm{PdS}_{2} \mathrm{SiMe}_{2}$ moiety in $\mathbf{1}$ can serve as a convenient precursor for heterometallic sulfido clusters. In contrast, the related titaniumsilanethiolato complex $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Ti}\left(\mathrm{S}_{2} \mathrm{SiMe}_{2}\right)$ underwent a ligand transfer with $\mathrm{L}_{2} \mathrm{MCl}_{2}\left[\mathrm{~L}_{2} \mathrm{M}=\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{~V}\right.$, $\left.\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\right]$ to give $\mathrm{L}_{2} \mathrm{M}\left(\mathrm{S}_{2} \mathrm{SiMe}_{2}\right)$. ${ }^{2}$

Notes and references

\ddagger Selected data for 1: yellow crystals, yield 88%. $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.87\left(\mathrm{dq}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3},{ }^{2} J_{\mathrm{PH}} 8.7,{ }^{3} J_{\mathrm{HH}} 7.6 \mathrm{~Hz}\right), 1.13\left(\mathrm{dt}, 18 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right.$ $\left.{ }^{3} J_{\mathrm{PH}} 17,{ }^{3} J_{\mathrm{HH}} 7.6 \mathrm{~Hz}\right), 0.57\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right) . \delta_{\mathrm{P}}\left(202.35 \mathrm{MHz}, \mathrm{CDCl}_{3}, 85 \%\right.$ $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right): 20.5(\mathrm{~s}) . \delta_{\mathrm{Si}}\left(99.25 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{SiMe}_{4}\right): 36.1$ (t, $\left.{ }^{3} J_{\mathrm{SiP}} 2 \mathrm{~Hz}\right)$. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{36} \mathrm{P}_{2} \mathrm{PdS}_{2} \mathrm{Si}$: C, 36.16; H, 7.80; S, 13.79. Found: C, 36.07; H, 7.70; S, 13.88\%.

Selected data for 2: yellow crystals, yield 71%. $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $6.38\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 1.92-2.15\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right), 1.13(\mathrm{dt}, 18 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 17,{ }^{3} J_{\mathrm{HH}} 7.6 \mathrm{~Hz}$). $\delta_{\mathrm{P}}\left(202.35 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 26.5$ (s). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{ClP}_{2} \mathrm{PdS}_{2}$ Ti: C, 36.77; H, 6.35; S, 11.55. Found: C, 36.40; H, 6.37; S, 11.30%.
Selected data for 3: orange powder, yield 84%. $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.81-2.03\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right), 1.08-1.16\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) . \delta_{\mathrm{P}}(202.35$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $19.0(\mathrm{~s})$. IR $\mathrm{v} / \mathrm{cm}^{-1}: 531\left(\mathrm{~m}, v_{\mathrm{Ti}=\mathrm{S}}\right)$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{3} \mathrm{Ti} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 30.47; H, 6.34; S, 9.76. Found: C, 30.86; H, 6.70; S, 10.01%.
§ Crystal data: for 1: $\mathrm{C}_{14} \mathrm{H}_{36} \mathrm{SiP}_{2} \mathrm{~S}_{2} \mathrm{Pd}, M=464.99$, monoclinic, space group $P 2_{1} / n, a=9.4431(11), b=17.119(2), c=14.368(2) \AA, \beta=$ $108.271(5)^{\circ}, V=2205.6(4) \AA^{3}, Z=4, T=193 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=12.22$ cm^{-1}, Rigaku Mercury CCD diffractometers, 17804 measured reflections $\left(2 \theta_{\max }=55.0^{\circ}\right)$. At convergence, $R 1=0.032, w R 2=0.040$, and GOF $=$ 1.01 for 217 variables refined against all 5037 unique reflections. For 2 : $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{ClTiPd}, M=555.28$, monoclinic, space group $P 2_{1} / n, a=$ 11.418(5), $b=17.174(8), c=12.419(6) \AA$, $\beta=99.558(7)^{\circ}, V=2401(1)$ $\AA^{3}, Z=4, T=153 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=14.99 \mathrm{~cm}^{-1}, 19287$ measured reflections $\left(2 \theta_{\max }=54.9^{\circ}\right)$. At convergence, $R 1=0.031, w R 2=0.078$, and GOF $=1.04$ for 252 variables refined against all 5430 unique reflections. For 3. $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}_{25} \mathrm{H}_{62} \mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{Cl}_{4} \mathrm{TiPd}_{2}, M=985.35$, monoclinic, space group $P 2_{1} / n, a=10.305(3), b=20.642(7), c=19.845(7) \AA, \beta=$ $93.913(4)^{\circ}, V=4211(2) \AA^{3}, Z=4, T=173 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=16.01 \mathrm{~cm}^{-1}$, 33890 measured reflections $\left(2 \theta_{\max }=55.0^{\circ}\right)$. At convergence, $R 1=0.030$, $w R 2=0.070$, and GOF $=1.00$ for 414 variables refined against all 9627 unique reflections. The structures were solved by Patterson methods for $\mathbf{1}$ and direct methods for 2 and $\mathbf{3}$, and refined on F^{2} by full-matrix leastsquares procedures using the CrystalStructure package. CCDC reference numbers 180416-180418. See http://www.rsc.org/suppdata/cc/b2/ b201702d/ for crystallographic data in CIF or other electronic format.

1 D. T. T. Tran, N. J. Taylor and J. F. Corrigan, Angew. Chem., Int. Ed., 2000, 39, 935; P. A. Shapley, H.-C. Liang and N. C. Dopke, Organometallics, 2001, 20, 4700; L. Cai and R. H. Holm, J. Am. Chem. Soc., 1994, 116, 7177.
2 D. M. Giolando, T. B. Rauchfuss and G. M. Clark, Inorg. Chem., 1987, 26, 3080.
3 D. T. T. Tran and J. F. Corrigan, Organometallics, 2000, 19, 5902; I. Kovacs, C. Pearson and A. Shaver, J. Organomet. Chem., 2000, 596, 193; J. Chojnacki, B. Becker, A. Konitz, M. J. Potrzebowski and W Wojnowski, J. Chem. Soc., Dalton Trans., 1999, 3063; A. Bauer, W. Schneider, K. Angermaier, A. Schier and H. Schmidbaur, Inorg. Chim. Acta, 1996, 251, 249
4 N. Brugat, A. Polo, Á. Álvarez-Larena, J. F. Piniella and J. Real, Inorg. Chem., 1999, 38, 4829.
5 S. Kuwata, S. Kabashima, Y. Ishii and M. Hidai, J. Am. Chem. Soc., 2001, 123, 3826; S. Kuwata, S. Kabashima, N. Sugiyama, Y. Ishii and M. Hidai, Inorg. Chem., 2001, 40, 2034; U. Amador, E. Delgado, J. Forniés, E. Hernández, E. Lalinde and M. T. Moreno, Inorg. Chem., 1995, 34, 5279.
6 N. Wheatley and P. Kalck, Chem. Rev., 1999, 99, 3379.
7 Z. K. Sweeney, J. L. Polse, R. A. Andersen, R. G. Bergman and M. G. Kubinee, J. Am. Chem. Soc., 1997, 119, 4543.
8 P. J. Lundmark, G. J. Kubas and B. L. Scott, Organometallics, 1996, 15, 3631.

9 J. R. Hagadorn and J. Arnold, Inorg. Chem., 1997, 36, 2928.
10 U. Müller and V. Krug, Angew. Chem., Int. Ed. Engl., 1988, 27, 293.

[^0]: \dagger Electronic supplementary information (ESI) available: experimental details and spectroscopic data for 1, 2 and 3. See http://www.rsc.org/ suppdata/cc/b2/b201702d/

