www.rsc.org/chemcomm

ChemComm

Lingjun Chou, Yingchun Cai, Bing zhang, Jianzhong Niu, Shengfu Ji and Shuben Li*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R.China. E-mail: lzcpcn@ns.lzb.ac.cn

Received (in Cambridge, UK) 5th November 2001, Accepted 22nd March 2002 First published as an Advance Article on the web 8th April 2002

A CeO₂-doped Na-Mn-W/SiO₂ catalyst for oxidative conversion of methane has been studied in a micro-stainless-steel reactor under elevated pressure; a CH₄ conversion of 47.2% with a C₃-C₄ selectivity of 47.3% (C₂:C₃:C₄ = 1:1:3.3) was obtained at 983 K with 1.0×10^5 ml g⁻¹ h⁻¹ GHSV, CH₄/O₂ = 2.5 and P = 0.6 MPa.

In the last two decades, much attention has been paid to the conversion of methane under oxidative conditions into products with additional value.^{1–3} Recently, our work on the 2% Mn_2O_3 – 5% Na_2WO_4 /SiO₂ catalyst showed that this catalyst had excellent activity for oxidative coupling of methane (OCM) under different reaction conditions including under elevated pressures, and was stable for long periods.^{3,4} In the OCM over the catalyst, we found that small amounts of C₃ and C₄ hydrocarbons were produced under different conditions, particularly at elevated pressures. On the other hand, Lunsford and coworkers,⁵ in particular, reported that C₃ and C₄ hydrocarbons were obtained from methane oxidation through a two-step reaction.

Here, the CeO₂ modified $Mn_2O_3-Na_2WO_4/SiO_2$ catalyst system was examined and found to have excellent performance in the conversion of methane to C_3-C_4 hydrocarbons under elevated pressure.

The CeO₂ modified 2% Mn₂O₃-5% Na₂WO₄/SiO₂ catalysts were prepared by the wet impregnation method. Silica particles were washed with water several times and dried and used as the stand-by material. The pretreated silica particles (40–60 mesh, surface area = 156 m² g⁻¹) were impregnated with aqueous solutions of Mn(NO₃)₂ (A.R.), Na₂WO₄·2H₂O (A.R.) and Ce(NO)₃·6H₂O in appropriate concentrations at 323 K. The catalysts were dried overnight at 373 K and calcined in air at 1123 K for 8 h (the surface area of the resulting catalyst was 6.8 m² g⁻¹). The catalytic runs were carried out in a continuous vertical-flow fixed-bed reactor comprising of a stainless-steel tube (I.D. = 8 mm). 0.4 g catalyst was loaded in the reactor while the remaining space of the reactor was filled with ceramic particles (40 mesh) so as to minimize the contribution due to any gas-phase reactions.

In all experiments, the reactant gases (without diluent) were co-fed into the reactor and their flow-rates were regulated with mass flow controllers. A Ni/Cr–Ni/Al thermocouple was inserted into center of the reactor to monitor the temperature of the catalyst-bed and another thermocouple was positioned at the hottest part of the reactor to manipulate the furnace. The products were analyzed using three on-line gas chromatographs with TCD detectors (two GCs, one with a 5A molecular sieve column, for the separation and analysis of O_2 , CH_4 , CO and the other with a Poropak Q column for CH_4 , CO_2 , C_2H_4 , C_2H_6) and in the third a GC FID detector with a Al₂O₃ capillary column (40.0 m) was used, with high-purity nitrogen as the carrier gas to separate C₃–C₄ hydrocarbons.

We examined the effects of several reaction conditions, such as temperature, pressure, GHSV and ratio of methane to oxygen on selectivity to C3-C4 hydrocarbons and conversion of methane. Based on the investigated effects of the operation conditions, all experiments were chosen under mild temperatures and high GHSVs. The results obtained over the CeO₂ doped Mn-W/SiO₂ catalyst at 983 K and 0.6 MPa with a range of GHSVs are presented in Table 1, where data were taken after 30 min of reaction. In the reaction of CeO₂ modified $2\%\ Mn_2O_3{-}5\%\ Na_2WO_4/SiO_2$ catalysts for oxidative conversion of methane, it was found that a 16.5% yield of C_3-C_4 hydrocarbon with a 37.2% of CH₄ conversion could be obtained at a CH₄/O₂ ratio of 4 and 1.0 \times 10⁵ ml g⁻¹ h⁻¹ GHSV (run 6 in Table 1). Table 1 illustrates that CH₄ conversion and selectivity of C₃-C₄ hydrocarbons increases, with an increase of GHSV from 0.4×10^5 to 1.0×10^5 ml g⁻¹ h⁻¹, however, when the GHSV was increased from 1.0×10^5 to 2.0×10^5 ml g⁻¹ h⁻¹, CH₄ conversion and selectivity of C₄ hydrocarbon decreased, but C₃ selectivity still increased. Table 1 also shows that in terms of the conversion of methane to C_3-C_4 hydrocarbons the CeO2 doped Mn-W/SiO2 catalyst (Mn2O3-Na₂WO₄/SiO₂ with added CeO₂) have excellent catalytic activity. However, in other catalyst formulations, such as CeO2 doped Mn/SiO₂, Na₂WO₄/SiO₂, Mn/SnO₂ and Na₂WO₄/CeO₂, only small amounts of C3-C4 were observed, which indicates a synergistic interaction Ce, Mn and W over the CeO2 doped Mn-W/SiO₂ catalyst.

Fig. 1 shows the effects of CH_4/O_2 on CH_4 conversion and C_3-C_4 selectivities. With a decrease of CH_4/O_2 , CH_4 conversion, C_3-C_4 yield and C_3-C_4 selectivities increase, whereas

Table 1 Perf	ormances of C	eO2-Mn2O2-N	a ₂ WO ₄ /SiO ₂ a	and other c	catalysts for th	ne oxidative	conversion of	of methane at	elevated	pressures ^a
--------------	---------------	-------------	--	-------------	------------------	--------------	---------------	---------------	----------	------------------------

			Selectivity (%)							
Cat.	$10^{-5} {\rm GHSV/ml} {\rm g}^{-1} {\rm h}^{-1}$	Conv. (%)	C ₂	$C_2^{=}/C_2^{-}$	C ₃	C ₃ =/C ₃ -	C_4	$C_4 = /C_4 =$	CO_2	СО
A ^b	1.0	18.5	60.4	1.57	0	_	5.0	0	20.6	14.0
\mathbf{B}^{c}	1.0	23.3	62.2	1.85	2.6	0.23	0		21.4	15.2
С	1.0	32.1	34.2	1.40	4.5	0.41	19.5	4.11	20.5	21.3
D	0.4	22.4	49.6	1.14	11.1	0.13	3.4	0.28	20.6	15.3
D	0.5	20.3	32.3	2.09	13.0	0.14	16.0	6.45	19.4	19.1
D	1.0	37.2	29.4	2.18	16.4	0.18	28.0	5.20	10.6	15.6
D	1.5	30.7	30.8	2.61	19.2	0.10	8.2	4.94	13.6	28.2
D	2.0	30.0	27.2	3.15	23.3	0.10	7.3	0.82	17.0	25.2

^{*a*} Reaction conditions: CH₄/O₂ = 4, P = 0.6 MPa, T = 983 K. ^{*b*} SiO₂ non-treated. ^{*c*} SiO₂ treated by washing with water, A = 2% Mn₂O₃-5% Na₂WO₄/SiO₂, B = 2% Mn₂O₃-5% Na₂WO₄/SiO₂-treated, C = 5% CeO₂-2% Mn₂O₃-2.5% Na₄P₂O₇/SiO₂, D = 5% CeO₂-2% Mn₂-5% Na₂WO₄/SiO₂.

996

Fig. 1 Effect of CH₄/O₂ on the conversion of methane over 5% CeO₂–Na₂WO₄–Mn₂O₃/SiO₂: T = 983 K, GHSV = 1.0×10^5 ml g⁻¹ h⁻¹, P = 0.6 MPa.

CO₂ selectivity decreases significantly and CO selectivity increases sharply, but the total CO_x selectivity decreases slightly. This implies, at least partly, that the origin of CO_x is mainly from the oxidation of CH₄ at this rather high temperature (983 K), pressure and GHSV over CeO₂ modified Mn₂O₃– Na₂WO₄/SiO₂ catalyst. An increase in oxygen pressure results in a marked shift to higher molecular weight products. A 22.3% yield of C₃–C₄ with 47.2% of CH₄ conversion and 47.3% of C₃– C₄ selectivity was obtained at CH₄/O₂ = 2.5. Additionally, it is found that higher temperatures do not favor the formation of C₃–C₄ hydrocarbons.

The addition of CeO₂ to the Mn-W/SiO₂ catalysts on the conversion of methane to C_3-C_4 hydrocarbons at elevated pressures led to significant effects. Fig. 2 shows the effects of CeO₂ loading on CH₄ conversion and C₃-C₄ selectivities for the reaction. With CeO₂ loading increased from 0 to 5%, CH₄ conversion and C₃-C₄ yield increases. Further CeO₂ loading from 5 to 20% led to a slight decrease in CH₄ conversion and C₃-C₄ yield. The performances of catalyst depend on the loading of CeO₂ and the most suitable amount of CeO₂ is 1–5%. We found that other metal oxide doped 2% Mn₂O₃-5% Na₂WO₄/SiO₂ catalysts also exhibit good conversions of methane to C₃-C₄ hydrocarbons, for example, on a 8% SnO₂ promoted Na-Mn-W/SiO₂ catalyst, a CH₄ conversion of 29.7% with a C₃-C₄ selectivity of 42.0% was attained at a pressure of 0.6 MPa and 1013 K.

By investigating all these results, it is concluded that the CeO_2 promoted Na-Mn-W/SiO₂ catalysts not only exhibit

Fig. 2 Effect of CeO₂ loading on the conversion of methane over CeO₂– Na_2WO_4 – Mn_2O_3/SiO_2 : T = 983 K, GHSV = 1.0×10^5 ml g⁻¹ h⁻¹, CH₄/ $O_2 = 4$, P = 0.6 MPa.

excellent performance for conversion of methane to C_3-C_4 hydrocarbons at elevated pressure but also show excellent behavior for the oxidative coupling of methane: at 1.5×10^5 ml g^{-1} h⁻¹ GHSV and 993 K with a CH₄/O₂ ratio of 6, a 23.0% CH₄ conversion with 84.7% C₂₊ selectivity was achieved. On the basis of the above results, we propose that high GHSV, low CH₄/O₂ ratio, low temperature and elevated pressure favor the output of C₃-C₄ hydrocarbons. We consider that C₃ or C₄ hydrocarbons are formed by oxidative dehydrogenation and oxidative re-coupling of C₂H₄ and/or C₂H₆ (containing CH₄) in the gas phase and the partial pressure of oxygen in the gas phase plays an important role in the implementation of the reaction.⁶

Further experiments are currently being carried out in our laboratory to confirm these deductions through catalyst characterization and to explain the nature of the CeO_2 promoted Mn-W/SiO₂ catalysts under elevated pressure.

Notes and references

- 1 J. H. Lunsford, Angew. Chem., Int. Ed. Engl., 1995, 34, 970.
- 2 K. Murata and H. Ushijima, J. Chem. Soc., Chem. Commun., 1994, 1157.
- 3 S. B. Li, Chin. J. Chem., 2001, 19, 16.
- 4 X. P. Fang, S. B. Li and J. Z. Lin, J. Mol. Catal. (China), 1992, 6, 225.
- 5 S. Pak, T. Rades, M. P. Rosynek and J. H. Lunsford, *Catal. Lett.*, 2000, **66**, 1.
- 6 J. A. Labinger, Catal. Lett., 1988, 1, 371.