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A graphite felt electrode modified with (6S,7R,10R)-
4-amino-2,2,7-trimethyl-10-isopropyl-1-azaspiro[5.5]unde-
cane N-oxyl was prepared for electrocatalytic oxidation of
diols; electrolysis of diols on the modified electrode yielded
optically active lactones (92.0–96.4%), with an enantiopurity
of 82–99% ee.

The preparation of optically active lactones is of importance for
the synthesis of chiral bioactive compounds and functional
materials. 2,2,6,6-Tetramethylpiperidin-1-yloxyl (TEMPO) is
known to be an effective redox mediator for the chemical or
electrochemical oxidation of diols to lactones.1–10 Bobbitt et al.
demonstrated the asymmetric oxidation of cis-1,2-cyclohex-
anedimethanol to the corresponding optically active lactones
using 4-acetylamino-2,2,7-trimethyl-10-isopropyl-1-azaspiro-
[5.5]undecane N-oxyl (4-acetylamino-SPIROXYL) as a chiral
nitroxyl radical via a non-electrochemical method.11 In order to
construct a clean and simple reaction system, we report here the
first efficient asymmetric electrocatalytic oxidation of diols to
the corresponding optically active lactones on a SPIROXYL-
modified graphite felt (GF) electrode.

Four isomers of optically active 4-amino-SPIROXYL were
prepared by the reaction of 2,2,4,4,6-pentamethyl-2,3,4,5-tetra-
hydropyrimidine with (+)-dihydrocarvone as the starting mate-
rial.11 The SPIROXYL-modified GF electrode was prepared in
a similar manner as in the preparation of a TEMPO-modified
GF electrode12 by attaching 4-amino-SPIROXYL to the
carboxyl groups of a thin poly(acrylic acid) (PAA) layer coated
on GF.13 Fig. 1 shows the cyclic voltammogram (CV) of a
(6S,7R,10R)-SPIROXYL-modified GF electrode, in which a

reversible redox couple was observed. This redox couple
corresponds to the one-electron oxidation of nitroxyl radical to
oxoammonium ion. The immobilized (6S,7R,10R)-SPIROXYL
on the electrode surface was quite stable and no deactivation
was observed in CV after repeated potential scanning. The
oxidation potential was found at +0.58 V vs. Ag/AgCl and the
peak separation between the positive and negative peak
potentials was 65 mV. The amount of electroactive
(6S,7R,10R)-SPIROXYL on the electrode surface as deter-
mined by integrating the oxidation current peak of the CV and
applying Faraday’s law was ca. 8.4 3 1026 mol cm23. This
means that ca. 20% of the carboxyl groups of the PAA layer on
the GF electrode were modified with (6S,7R,10R)-SPIROXYL.
When 3-methyl-1,5-pentanediol was added to the electrolytic
solution bathing the (6S,7R,10R)-SPIROXYL-modified GF
electrode, an increase of the nitroxyl radical oxidation current
was observed (Fig. 1). The oxoammonium ion reduction current
disappeared, and the new oxidation peak current was propor-
tional to the concentration of 3-methyl-1,5-pentanediol. The
ratio of this new oxidation peak’s height to the reversible
nitroxyl radical oxidation peak height decreased as the scan rate
increased. 3-Methyl-1,5-pentanediol is not oxidized directly on
a bare GF electrode below +1.0 V vs. Ag/AgCl. All these results

Fig. 1 Cyclic voltammograms of a (6S,7R,10R)-SPIROXYL-modified GF
electrode (1.0 3 1.0 3 0.5 cm) at 50 mV s21 in 0.1 M NaClO4/CH3CN: with
(a) 0 M 3-methyl-1,5-pentanediol; (b) 0.1 M 3-methyl-1,5-pentanediol and
0.2 M 2,6-lutidine; (c) 0.2 M 3-methyl-1,5-pentanediol and 0.2 M
2,6-lutidine; (d) 0.1 M 3-methyl-1,5-pentanediol on a bare GF electrode.

Fig. 2 Macroelectrolysis of 3-methyl-1,5-pentanediol using the
(6S,7R,10R)-SPIROXYL-modified GF electrode in the presence of 2,6-luti-
dine: (-) 3-methyl-1,5-pentanediol, (2) (R)-3-methyl-d-valerolactone and
(5) (S)-3-methyl-d-valerolactone.

Table 1 Asymmetric oxidation of 3-methyl-1,5-pentanediol to (S)-
3-methyl-d-valerolactonea

Method
Current
efficiency (%) Ee (%)

Isolated
yield (%)

Turnover
number

Electrocatalysis on
(6S,7R,10R)-SPIROXYL-
modified GF

97.0 98 96.4 459.0

Electrocatalysis on bare
GFb

78.5 38 86.5 34.7

Reagent oxidationc — 16 85.0 34.0
a In the presence of 0.5 mmol 3-methyl-1,5-pentanediol and 2 mmol
2,6-lutidine in each reaction. b 0.05 mmol (6S,7R,10R)-4-acetylamino-
SPIROXYL. c Ref. 11.
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are characteristic of electrochemical catalysis14,15 of the
oxidation of 3-methyl-1,5-pentanediol. Similar results were
seen with the other diols used.

Preparative potential-controlled electrolysis was performed
on the (6S,7R,10R)-SPIROXYL-modified GF electrode (1.0 3
1.0 3 0.5 cm) in MeCN solution, using an ‘H’ type divided cell
separated by a cationic exchange membrane (Nafion 117). The
anolyte contained 0.5 mmol of substrate, 2 mmol of 2,6-lutidine
as a deprotonating agent, 0.5 mmol of tetralin as a chromato-
graphic standard and 0.5 mmol of NaClO4 as a supporting
electrolyte in a total volume of 5 ml. The catholyte was 5 ml of
MeCN solution containing 0.5 mmol of NaClO4. The elec-
trolysis was carried out at +0.8 V vs. Ag/AgCl. During
electrolysis, aliquots of anolyte were analyzed occasionally by
GC† and HPLC.‡ The consumption of 3-methyl-1,5-pentane-
diol and formation of 3-methyl-d-valerolactone are plotted
against electrolysis time in Fig. 2. After 10 h of electrolysis,
3-methyl-1,5-pentanediol was oxidized to the (R)- and (S)-
forms of 3-methyl-d-valerolactone in 1.0% and 95.4% yield,
respectively. Thus, the ee of the formed lactone was 98%. The
current efficiency and turnover number (given by ratio of mole
of product 3 4/mol of (6S,7R,10R)-SPIROXYL) were 97.0%
and 459.0, respectively, at 10 h of electrolysis. The catalytic
activity of the modified electrode remained high after several
runs.

When we carried out the oxidation reaction of 3-methyl-
1,5-pentanediol on a bare GF with (6S,7R,10R)-4-acetylamino-
SPIROXYL in solution or in a homogeneous chemical system
under similar conditions, the stereoselectivity was rather poor
(Table 1). Thus, this asymmetric oxidation reaction was
achieved only on the (6S,7R,10R)-SPIROXYL-modified GF
electrode.

The results from the oxidation reactions of a variety of diols
are shown in Table 2. (S)-(+)-1,4-Pentanediol was converted to
(S)-(2)-2-methyl-g-butyrolactone in high enantiomeric excess
of 99%. cis-1,2-Cyclohexanedimethanol was also oxidized to
the corresponding cis-(1R,6S)-(+)-8-oxabicyclo[4.3.0]nonan-
7-one in an enantioselectivity of 82%. They were oxidized to the
corresponding lactones in 94.9–97.0% current efficiency and
92.0–96.4% yield. The turnover numbers based on (6S,7R,10R)-
SPIROXYL are greater than 430. (S)-(+)-1,3-Butanediol did not
lead directly to the corresponding b-lactone; however, it was
oxidized to a optically active hydroxyaldehyde without loss of
optical purity (99% ee). The current efficiency and turnover
number (given by ratio of mole of product 3 2/mol of
(6S,7R,10R)-SPIROXYL) were 84.6% and 191.4, respectively.
This hydroxyaldehyde was oxidized directly with sodium
chlorite to the corresponding hydroxy acid in 80.4% yield to
give an unstable compound, and the closure of the hydroxy acid
to b-lactone was carried out using PhSO2Cl (Scheme 1).16

We have described the first efficient, asymmetric oxidation
of a number of diols using a chemically modified electrode.
Electrolysis on the (6S,7R,10R)-SPIROXYL-modified GF elec-
trode gave selectively (S)-isomers of lactones. We are now

investigating the other isomer-modified GF electrodes for the
asymmetric oxidation of diols.
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Education, Culture, Sports, Science and Technology of Japan.

Notes and references
† The GC analysis was carried out using a CP-Cyclodextrin-B-2,3,6-M-19
capillary column (0.25 mm f 3 25 m). The column temperature increased
at 3 °C min21 from 80 to 150 °C. The injection and detector temperatures
were constant at 200 and 240 °C, respectively.
‡ The HPLC analysis was carried out using a Daisel CHIRALCEL® OD
column (4.6 mm f3 250 mm). The column temperature was constant at 40
°C. The analytes were eluted by PriOH–n-hexane (2+33) at 0.7 ml min21

flow rate, and detected by UV absorption at 254 nm.
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Table 2 Electrocatalytic oxidation of diols using the (6S,7R,10R)-SPIROXYL-modified GF electrode

Substrate Product Config.
Current
efficiency (%) Eea (%)

Isolated
yield (%)

Turnover
number

S 96.5 99 94.8 451.4

S 97.0 98 96.4 459.0

1R,6S 94.9 82 92.0 438.1

S 84.6 99 80.4b 191.4

a Determined by GC or HPLC. b Isolated yield of (S)-(+)-3-hydroxybutyric acid.

Scheme 1
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