# Supplementary data

# Redox-Robust Pentamethylamidoferrocenyl Metallodendrimers that Cleanly and Selectively Recognize the H<sub>2</sub>PO<sub>4</sub><sup>-</sup> Anion.

Jaime Ruiz, Maria Jesus Ruiz Medel, Marie-Christine Daniel, Jean-Claude Blais, Didier Astruc\*

#### Experimental data

NEt<sub>3</sub> (2 mmol),  $CH_2Cl_2$  (20 mL), then [FeCp\*C<sub>5</sub>H<sub>4</sub>COCl)] (1.2 mmol) prepared according to ref 2b were added to the commercial DSM polyamine dend-DAB(NH<sub>2</sub>)<sub>x</sub> (1 mmol). After stirring overnight at room temperature, this solution was washed with a saturated aq. K<sub>2</sub>CO<sub>3</sub> solution, then with distilled water, and dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated. Addition of ether led to the precipitation of the yellow-orange powdery metallodendrimer that was further purified by dissolution in CH<sub>2</sub>Cl<sub>2</sub> and reprecipitation by addition of ether.

**G<sub>1</sub>:** <sup>1</sup>H NMR (CDCl<sub>3</sub>,  $\delta$  ppm.) 6.65 (t, 4H, NH), 4.24 (br, 8H, C<sub>5</sub>H<sub>4</sub>), 3.88 (br, 8H, C<sub>5</sub>H<sub>4</sub>), 3.43 (br, 8H, NHCH<sub>2</sub>), 2.47 (br, 12H, CH<sub>2</sub>N), 1.85 (s, 60H, C<sub>5</sub>Me<sub>5</sub>), 1.51 (br, 8H, CH<sub>2</sub>), 1.48 (br, 4H, CH<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>,  $\delta$  ppm.) 169.28 (CO), 82.07 (Cq, C<sub>5</sub>H<sub>4</sub>), 81.06 (Cq CCH<sub>3</sub>), 76.05 and 70.21 (C<sub>5</sub>H<sub>4</sub>), 52.81 (CH<sub>2</sub>), 38.92 (CH<sub>2</sub>), 27.92 (CH<sub>2</sub>), 10.67 (CH<sub>3</sub>); IR (nujol, cm<sup>-1</sup>) 1623 (v CO), 1539 (v, CN); MS (MALDI-TOF; m/z) Calcd. for C<sub>80</sub>H<sub>112</sub>N<sub>6</sub>Fe<sub>4</sub>O<sub>4</sub> : 1445.163, found : 1445.72; Anal. Calcd: C, 66.48, H, 7.81, found: C, 66.05, H, 7.36.

**G<sub>2</sub>**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ ppm.) 6.90 (br, 8H, NH), 4.31 (br, 16H, C<sub>5</sub>H<sub>4</sub>), 3.86 (br, 16H, C<sub>5</sub>H<sub>4</sub>), 3.43 (br, 16H, NHCH<sub>2</sub>), 2.35 (br, 36H, CH<sub>2</sub>N), 1.84 (s, 120H, C<sub>5</sub>Me<sub>5</sub>), 1.68 (br, 28H, CH<sub>2</sub>), 1.48 (br, 4H, CH<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, δ ppm.) 170.28 (CO), 81.16 (Cq CCH<sub>3</sub>), 76.40 and 70.32 (C<sub>5</sub>H<sub>4</sub>), 53.21 (CH<sub>2</sub>), 39.12 (CH<sub>2</sub>), 28.45 (CH<sub>2</sub>), 10.31 (CH<sub>3</sub>); IR (nujol, cm<sup>-1</sup>) 1620 (v CO), 1539 (v, CN); MS (MALDI-TOF; m/z) Calcd. for  $C_{168}H_{240}N_{14}Fe_8O_8$ : 3028, found: 3029; Anal. Calcd. for  $C_{168}H_{240}N_{14}Fe_8O_8$ : C, 66.58, H, 7.98, found: C, 65.12, H, 7.28.

**G<sub>3</sub>**: <sup>1</sup>H NMR (CDCl<sub>3</sub>,  $\delta$  ppm.) 7.16 (br, 16H, NH), 4.31 (br, 32H, C<sub>5</sub>H<sub>4</sub>), 3.86 (br, 32H, C<sub>5</sub>H<sub>4</sub>), 3.43 (br, 32H, NHCH<sub>2</sub>), 2.35 (br, 84H, CH<sub>2</sub>N), 1.84 (s, 240H, C<sub>5</sub>Me<sub>5</sub>), 1.68 (br, 56H, CH<sub>2</sub>), 1.48 (br, 4H, CH<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>,  $\delta$  ppm.) 170.28 (CO), 80.98 (Cq CCH<sub>3</sub>), 76.40 and 70.45 (C<sub>5</sub>H<sub>4</sub>), 53.21 (CH<sub>2</sub>), 39.08 (CH<sub>2</sub>), 28.36 (CH<sub>2</sub>), 10.52 (CH<sub>3</sub>); IR (nujol, cm<sup>-1</sup>) 1620 (v CO), 1540 (v, CN); MS (MALDI-TOF; m/z) Calcd. for C<sub>344</sub>H<sub>496</sub>N<sub>30</sub>Fe<sub>16</sub>O<sub>16</sub>, 6201.33, found : 6204.3; Anal. Calcd. for C<sub>344</sub>H<sub>496</sub>N<sub>30</sub>Fe<sub>16</sub>O<sub>16</sub> : C, 66.62, H, 8.06, found: C, 65.32, H, 7.28.

**G<sub>4</sub>:** <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ ppm.) 7.21 (br, 32H, NH), 4.31 (br, 64H, C<sub>5</sub>H<sub>4</sub>), 3.86 (br, 64H, C<sub>5</sub>H<sub>4</sub>), 3.43 (br, 64H, NHCH<sub>2</sub>), 2.35 (br, 180H, CH<sub>2</sub>N), 1.84 (s, 480H, C5CH<sub>3</sub>), 1.68 (br, 60H, CH<sub>2</sub>), 1.48 (br, 4H, CH<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, δ ppm.) 169.87 (CO), 80.97 (Cq CCH<sub>3</sub>), 76.40 and 70.40 (C<sub>5</sub>H<sub>4</sub>), 53.21 (CH<sub>2</sub>), 39.01 (CH<sub>2</sub>), 28.42 (CH<sub>2</sub>), 10.31 (CH<sub>3</sub>); IR (nujol, cm<sup>-1</sup>) 1622 (ν CO), 1540 (ν, CN); MS (MALDI-TOF; m/z) Calcd. for C<sub>696</sub>H<sub>1008</sub>N<sub>62</sub>Fe<sub>32</sub>O<sub>32</sub>: 12542.89, found: 12544.9.; Anal. Calcd. for C<sub>696</sub>H<sub>1008</sub>N<sub>62</sub>Fe<sub>32</sub>O<sub>32</sub>: C, 66.64, H, 8.10, found: C, 65.10, H, 7.78.

**G**<sub>5</sub>: <sup>1</sup>H NMR (CDCl<sub>3</sub>,  $\delta$  ppm.) 7.43 (br, 64H, NH), 4.41 (br, 128H, C<sub>5</sub>H<sub>4</sub>), 3.82 (br, 128H, C<sub>5</sub>H<sub>4</sub>), 3.43 (br, 128H, NHCH<sub>2</sub>), 2.37 (br, 372H, CH<sub>2</sub>N), 1.84 (s, 960H, C<sub>5</sub>Me<sub>5</sub>), 1.51 (br, 252H, CH<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>,  $\delta$  ppm.) 170.15 (CO), 81.16 (Cq CCH<sub>3</sub>), 76.47 and 70.46 (C<sub>5</sub>H<sub>4</sub>), 53.21 (CH<sub>2</sub>), 39.23 (CH<sub>2</sub>), 2838 (CH<sub>2</sub>), 10.50 (CH<sub>3</sub>); IR ( nujol, cm<sup>-1</sup>) 1622 (v CO), 1540 (v, CN); MS (MALDI-TOF; m/z) Calcd. for C<sub>1400</sub>H<sub>2032</sub>N<sub>126</sub>Fe<sub>64</sub>O<sub>64</sub>: 25226, found around 25000, broad.

The molecular peaks in the MALDI TOF mass spectra of the Fc\* dendrimers are sharp except that of the  $G_5$ -64-Fc\* dendrimer. The latter, as that of its parent analogue  $G_5$ -64-Fc,<sup>6b</sup> is broad around a mean value corresponding approximately to the molecular mass of the compound. Indeed, the mass-spectral

## Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2003

characterization showing the purity of the DSM polyamines has been reported by Meijer's group including the deviation in  $G_5$  (23% purity only although the molecular peak corresponding to the perfect 64 branch-polyamine dendrimer is largely dominant). See reference 5b of the main text.

## Titration graph of [*n*Bu<sub>4</sub>N][H<sub>2</sub>PO<sub>4</sub>]by G<sub>2</sub>-8Fc\*

Variations of the intensities of the initial wave (circles) and new wave (triangles) during the titration of a  $10^{-5}$  M solution of the G2 pentamethylamidoferrocenyl dendrimer (8 branches) by a  $10^{-3}$  M solution of  $[nBu_4N][H_2PO_4]$  in CH<sub>2</sub>Cl<sub>2</sub> in the presence of 0.1 M [nBu<sub>4</sub>N] [PF<sub>6</sub>], Pt anode, internal reference FeCp\*<sub>2</sub> (see text).



Equiv. H<sub>2</sub>PO<sub>4</sub><sup>-</sup> per branch