www.rsc.org/chemcomm

ChemComm

Ming-Si Wu, Muthian Shanmugasundaram and Chien-Hong Cheng*

Department of Chemistry, Tsing Hua University, Hsinchu, Taiwan 300. E-mail: chcheng@mx.nthu.edu.tw; Fax: 886-3-5724698; Tel: 886-3-5721454

Received (in Cambridge, UK) 11th December 2002, Accepted 4th February 2003 First published as an Advance Article on the web 18th February 2003

The $CoI_2(PPh_3)_2/Zn$ system effectively catalyzes the [2 + 2 + 2] ene-diyne cycloaddition of 1,6-heptadiynes with allenes in a highly regio- and chemoselective fashion to yield substituted benzene derivatives in good to excellent yields.

The transition-metal-catalyzed [2 + 2 + 2] cycloaddition of alkynes is a powerful method for the construction of polysubstituted benzene derivatives.1 Intermolecular cycloaddition of alkynes with alkenes provides a convenient alternative route for the synthesis of substituted benzenes, but this type of cycloaddition requires the use of electron-deficient alkynes with neutral alkenes² or neutral alkynes with electron-deficient alkenes.³ The [2 + 2 + 2] cycloaddition of an electronically neutral divne with a neutral alkene remains a great challenge to the organic chemist.⁴ Recently, we reported a highly regio- and chemoselective [2 + 2 + 2] cycloaddition of electron-deficient divnes with allenes catalyzed by the Ni(dppe)Br₂/Zn system.⁵ However, the diynes used were limited to those that contain at least a -CO₂Me group attached to the terminal alkyne carbon. Our continued interest in metal-mediated cycloaddition chemistry⁶ prompted us to search for an effective catalyst for the reaction of electronically neutral diynes with allenes. In this communication, we report the first example of highly regio- and chemoselective [2 + 2 + 2] cycloaddition of electronically neutral 1,6-heptadiynes with allenes catalyzed by cobalt complexes leading to polysubstituted benzene derivatives in good to excellent yields.

Treatment of dimethyl dipropargylmalonate **1a** with cyclohexylallene **2a** in the presence of $CoI_2(PPh_3)_2$ (5.00 mol%) and zinc powder (2.75 equiv.) in 1,2-dichloroethane at 80 °C for 8 h gave a 2,2-indene dicarboxylate derivative **4a** in 95% yield (Scheme 1). The reaction is believed to proceed *via* a [2 + 2 + 2] cycloaddition of **1a** with **2a** to form a cyclohexadiene intermediate **3a**, followed by isomerization to furnish the final substituted benzene derivative **4a**. No competitive dimerization and trimerization product of diyne **1a** was detected under these conditions as evidenced by the ¹H NMR spectrum of the crude reaction mixture. Control experiments indicated that in the absence of $CoI_2(PPh_3)_2$ or zinc powder, no reaction occurred.

To understand the nature of the catalytic reaction, the activities of various cobalt systems in 1,2-dichloroethane for the

† Electronic supplementary information (ESI) available: synthesis and characterization of compounds 4 and 6. See http://www.rsc.org/suppdata/ cc/b2/b212260j/

[2+2+2] cycloaddition of **1a** with **2a** were examined. In the presence of extra PPh₃, the catalytic reaction is strongly retarded. For example, the addition of 2 or 8 equiv. of PPh₃ relative to $CoI_2(PPh_3)_2$ to the catalytic solution reduced the yield of 4a to 33 and 12%, respectively. The use of simple CoI₂ and Zn powder gave 4a in 23% yield. Several bidentate phosphine complexes in the presence of Zn powder were also tested for their catalytic activities. $CoI_2(dppe)$ gave 4a in a moderate yield of 60%. Other bidentate phosphine complexes such as CoI₂(dppm), CoI₂(dppp), and CoI₂(dppb) were less effective, giving 4a in less than 5% yield. A brief examination of the effect of solvent on the yield of 4a using CoI₂(PPh₃)₂/Zn as the catalyst revealed that 1,2-dichloroethane was the solvent of choice. In the presence of THF, CH₃CN or DMF, the reaction was less efficient affording 4a in 9, 23 and 30% yields respectively, whereas in toluene no cycloaddition occurred.

The results for the $CoI_2(PPh_3)_2/Zn$ system catalyzed [2 + 2 + 2]2] cycloaddition of various 1,6-heptadiynes 1a-f with allenes 2a-e are compiled in Table 1. The reaction of 1a with cyclopentylallene 2b, n-butylallene 2c, t-butylallene 2d and phenylallene 2e afforded the corresponding cycloadducts 4b-e in 71, 88, 88 and 62% yields, respectively (entries 2-5). Under similar reaction conditions, diyne 1b having an ether linkage readily reacts with cyclohexylallene 2a to afford isobenzofuran derivative 4f in 84% yield (entry 6). The nitrogen containing divne 1c also undergoes cycloaddition with 2a and 2d to afford isoindole derivatives 4g and 4h in 79 and 75% yields, respectively (entries 7 and 8). Similarly, treatment of 1d with 2a afforded 2,2-indene dicarbonitrile 4i in moderate yield (entry 9). Notably, reactions of 1e with 2a and 2c under similar conditions proceeded smoothly to afford spiro compounds 4j and 4k in 90 and 82% yields (entries 10 and 11). Finally, the reaction of 1f with allene 2a furnished the corresponding indane derivative 4l in 76% yield (entry 12). For comparison, the latter reaction carried out in the presence of Ni(dppe)Br2 and Zn in CH3CN at 80 °C for 8 h, gave no expected product 4l. It is to be mentioned

Table 1 Results of cobalt-catalyzed [2 + 2 + 2] cycloaddition of 1,6-heptadiynes **1a–f** with allenes **2a–e**^{*a*}

Entry	Diyne	Allene	Product	Yield (%) ^b
1	1a	2a	4a	90 (95)
2	1a	2b	4b	71
3	1a	2c	4c	88
4	1a	2d	4d	88
5	1a	2e	4 e	62
6	1b	2a	4f	84
7	1c	2a	4g	79
8	1c	2d	4h	75
9	1d	2a	4i	61
10	1e	2a	4j	90
11	1e	2c	4k	82
12	1f	2a	41	76

^{*a*} The reaction of diyne (1.00 mmol) with allene (1.30 mmol) was carried out at 80 °C for 8 h in 1,2-dichloroethane (2.00 mL) using $CoI_2(PPh_3)_2$ (5.00 mol%) and Zn powder (2.75 mmol) as the catalyst. ^{*b*} Isolated yields; yield in the parentheses was measured from the crude product by the ¹H NMR integration method using mesitylene as an internal standard.

that the present cobalt-catalyzed cycloaddition of diynes with allenes produces a similar type of cycloadducts as the ruthenium-catalyzed cycloaddition of diynes with terminal acetylenes.^{1d}

The current method can be successfully extended to unsymmetrical dignes 5a–c (Scheme 2). The [2 + 2 + 2]cycloaddition of monosubstituted trimethylsilyl diyne 5a with cyclohexylallene catalyzed by the CoI2(PPh3)2/Zn system is highly regio- and chemoselective furnishing meta-isomer 6a exclusively in 89% yield (Table 2, entry 1). No other regioisomer was detected in the ¹H NMR spectrum of the crude reaction mixture. Similarly, the reaction with *n*-butylallene afforded a single meta-isomer 6b in 85% yield (entry 2). Excellent regioselectivity was also observed for the cycloaddition of the oxygen containing unsymmetrical divne 5b with cyclohexylallene to give trimethylsilyl substituted isobenzofuran derivative 6c (entry 3). On the other hand, the reaction of monophenyl substituted diyne 5c with cyclohexylallene afforded a mixture of meta-isomer 6d and ortho-isomer 7d in a ratio of 94:6 (entry 4).

Scheme 2

Table 2 Results of cobalt-catalyzed [2 + 2 + 2] cycloaddition of unsymmetrical diynes **5a–c** with allenes 2

Entry	Diyne	Allene	Product	meta:ortho	Yield (%) ^a
1	5a	2a	6a	>99	89
2	5a	2c	6b	>99	85
3	5b	2a	6c	>99	83
4	5c	2a	6d + 7d	94:6	71
a Isolated	yields.				

There are several interesting features of the present catalytic reaction. First, the reaction is highly chemoselective with the allenes. Of the two carbon-carbon double bonds in the allenes, only the terminal double bond is involved in the cycloaddition to afford the corresponding chemoisomer 4, and no trace of other possible chemoisomer was detected under the reaction conditions. Unlike the cobalt catalyst, the Ni(dppe)Br₂/Zn system catalyzed the reaction of 1a with 2a to give a mixture of chemoisomers 8a and 4a in 38% yield in a 75:25 ratio (Scheme 3). Similarly, the reaction of dipropargyl ether 1b with 2a catalyzed by the same nickel system afforded a mixture of chemoisomers 8f and 4f in a 78:22 ratio in 24% total yield. The above results show clearly that the cobalt catalysts are more reactive and selective than nickel catalysts for the [2 + 2 + 2]cycloaddition of heteroatom containing 1,6-heptadiynes with allenes. Second, the allenes used in the present cycloaddition are synthetically equivalent to monosubstituted alkynes, but the regioselectivity of the present cycloaddition is much greater than the direct cycloaddition of the corresponding alkynes with diynes. For example, *n*-butylallene is equivalent to 1-heptyne. The reaction of 5a with 1-heptyne in the presence of the CoI₂(PPh₃)₂/Zn system afforded a mixture of meta-isomer 6b

Scheme 3

and *ortho*-isomer **7b** in 84% yield in a 63:37 ratio. However, the same reaction with *n*-butylallene provided **6b** as the sole product in 85% yield (Table 2, entry 2). These results strongly suggest that allenes are more selective than monosubstituted alkynes in the present cycloaddition. Finally, in marked contrast to other cycloadditions that require a high ratio of alkene to diyne,^{4,7} the ratio of allene to diyne is kept almost 1:1 for the present reaction. The competitive dimerization and trimerization of diyne is effectively suppressed and less than 5% of the dimerization product is formed in only a few reactions.

The catalytic reaction is likely initiated by the reduction of $Co(\pi)$ species to $Co(\tau)$ species by zinc metal. Coordination of diyne to the cobalt center followed by cyclometalation produces cobaltacyclopentadiene intermediate **9**.⁸ Coordination of the terminal carbon–carbon double bond of allene and selective insertion into an unsubstituted $Co(\pi)$ –carbon bond gives cobaltacycloheptadiene **10a**.¹ Subsequent reductive elimination and isomerization affords the final product **6** and regenerates the $Co(\tau)$ catalyst.

The highly regioselective insertion of allene into the Co(III)– carbon bond in **9** and the formation of intermediate **10a** accounts for the high *meta*-selectivity of the present cycloaddition. Other possible intermediates such as **10b** leading to *ortho*isomer **7** are less favourable presumably due to steric effects.^{1d,5}

In conclusion, we have demonstrated that the $CoI_2(PPh_3)_2/Zn$ system successfully catalyses the [2 + 2 + 2] cycloaddition of electronically neutral 1,6-heptadiynes with allenes. The catalytic reaction is highly regio- and chemoselective and tolerates a variety of functional groups present in the diynes. The allenes are synthetically equivalent to monosubstituted alkynes, but are superior in terms of the regioselectivity. Additionally, we have shown that the CoI₂(PPh₃)₂/Zn system is much more active and selective than the Ni(dppe)Br₂/Zn system. Further studies on the scope of this reaction is progress.

We thank the National Science Council of the Republic of China (NSC-91-2113-M-007-053) for the support of this research.

Notes and references

- (a) N. E. Schore, *Chem. Rev.*, 1988, **88**, 1081; (b) V. Geovorgyan and Y. Yamamoto, *J. Organomet. Chem.*, 1999, **576**, 232; (c) S. Saito and Y. Yamamoto, *Chem. Rev.*, 2000, **100**, 2901; (d) Y. Yamamoto, R. Ogawa and K. Itoh, *Chem. Commun.*, 2000, 549.
- 2 (a) L. E. Brown, K. Itoh, H. Suzuki, K. Hirai and J. A. Ibers, J. Am. Chem. Soc., 1978, 100, 8232; (b) B. M. Trost and G. J. Tanoury, J. Am. Chem. Soc., 1987, 109, 4753.
- 3 (a) T. Sambaiah, L.-P. Li, D.-J. Huang, C.-H. Lin, D. K. Rayabarapu and C.-H. Cheng, J. Org. Chem., 1999, 64, 3663; (b) S. Ikeda, N. Mori and Y. Sato, J. Am. Chem. Soc., 1997, 119, 4779; (c) S. Ikeda, H. Watanabe and Y. Sato, J. Org. Chem., 1998, 63, 7026; (d) O. Pardigon, A. Tenaglia and G. Buono, Tetrahedron Lett., 2000, 41, 4089.
- 4 Y. Yamamoto, H. Kitahara, R. Ogawa and K. Itoh, *J. Org. Chem.*, 1998, **63**, 9610.
- 5 M. Shanmugasundaram, M.-S. Wu, M. Jeganmohan, C.-W. Huang and C.-H. Cheng, J. Org. Chem., 2002, 67, 7724.
- 6 (a) M. Shanmugasundaram, M.-S. Wu and C.-H. Cheng, Org. Lett., 2001, 3, 4233; (b) K. C. Chao, D. K. Rayabarapu, C.-C. Wang and C.-H. Cheng, J. Org. Chem., 2001, 66, 8804; (c) A. Jeevananandam, R. P. Korivi, I. -W Huang and C.-H. Cheng, Org. Lett., 2002, 4, 100.
- 7 (a) Z. Zhou, L. P. Battaglia, G. P. Chiusoli, M. Costa, M. Nardeli, C. Pelizzi and G. Predieri, J. Chem. Soc., Chem. Commun., 1990, 1632; (b) Z. Zhou, M. Costa and G. P. Chiusoli, J. Chem. Soc., Perkin Trans. 1, 1992, 1399.
- 8 Y. Wakatsuki, O. Nomura, K. Kitaura, K. Morokuma and H. Yamazaki, J. Am. Chem. Soc., 1983, 105, 1907.