New synthetic route for organic polyoxometallic clusters: synthetic and structural investigations on the first dumb-bell shaped polyoxozirconium hydroxide with the $\left[\mathrm{Zr}_{9}\left(\mu_{5}-\mathrm{O}\right)_{\mathbf{2}}\left(\mu_{3}-\mathrm{O}\right)_{\mathbf{4}}(\mu-\mathrm{O})_{4}(\mu-\mathrm{OH})_{8}\right]$ core structure \dagger

Guangcai Bai, Qingjun Ma, Herbert W. Roesky,* Denis Vidovic and Regine Herbst-Irmer
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany. E-mail: hroesky@gwdg.de

Received (in Cambridge, UK) 13th December 2002, Accepted 14th February 2003
First published as an Advance Article on the web 5th March 2003

A new route for organic polyoxometallic clusters describes the first dumb-bell-like organic polyoxozirconium hydroxide $\left[\left\{(\mathrm{Cp} * \mathrm{Zr})_{4}\left(\mu_{5}-\mathrm{O}\right)\left(\mu_{3}-\mathrm{O}\right)_{2}(\mu-\mathrm{OH})_{4}\right\}_{2} \mathrm{Zr}(\mu-\mathrm{O})_{4}\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}\left(2 ; \mathrm{Cp}^{*}\right.$ $\left.=\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ involving the treatment of the Brønsted acidic organozirconium hydroxide $\quad\left[\left(\mathrm{Cp}^{*} \mathrm{Zr}\right)_{6}\left(\mu_{4}-\mathrm{O}\right)(\mu-\mathrm{O})_{4}(\mu-\right.$ $\mathrm{OH})_{8} \cdot \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ (1) with organozirconium compounds.

Organometallic oxides that are soluble analogues of discrete fragments of solid metal oxides are of considerable interest because of their catalytic properties, as catalyst supporting materials, and as modeling system for the reactions and properties of metal oxides in solution. ${ }^{1}$ Zirconium oxides provide valuable catalysts for the hydrogenation, isomerization and selective oxidation reactions. ${ }^{2}$ The most important method for the synthesis of organic polyoxometallic compounds is the hydrolysis of organometallic complexes. ${ }^{3}$ However, the synthesis of a halogen-free aggregate of organozirconium oxide is very difficult to achieve. ${ }^{4}$ We have reported the synthesis and characterization of the organozirconium oxide clusters [\{(Et$\left.\left.\left.\mathrm{Me}_{4} \mathrm{C}_{5}\right) \mathrm{Zr}\right\}_{6}\left(\mu_{6}-\mathrm{O}\right)\left(\mu_{3}-\mathrm{O}\right)_{8}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ and $\quad\left[\left\{\left(\mathrm{EtMe}_{4} \mathrm{C}_{5}\right) \mathrm{Zr}\right\}_{6}\left(\mu_{6}-\right.\right.$ $\left.\mathrm{O})\left(\mu_{3}-\mathrm{O}\right)_{8}\right] \cdot \mathrm{C}_{9} \mathrm{H}_{12}$, which can be viewed as soluble analogues of solid zirconium oxide. ${ }^{5}$ More recently, an organic polyoxozirconium hydroxide $\quad\left[\left(\mathrm{Cp} * \mathrm{Zr}_{6}\left(\mu_{4}-\mathrm{O}\right)(\mu-\mathrm{O})_{4}(\mu-\right.\right.$ $\left.\mathrm{OH})_{8}\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ (1) was synthesized via the hydrolysis of an organozirconium chloride in a liquid ammonia/toluene two phase system. ${ }^{6}$ The latter species is of interest in that its offcenter interstitial oxygen core structure, its Brønsted acidic μ OH groups and its model character as a support for transition metal catalysts are unique in this system.

In this communication, we report the synthesis and structural characterization of the first dumb-bell-like organic polyoxozirconium complex via the reaction of cluster $\mathbf{1}$ with organozirconium compounds. Treatment of $\mathbf{1}$ with $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrH}_{2}$ or alternatively with $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ in toluene at room temperature results in the formation of the organic polyoxozirconium cluster $\quad\left[\left\{(\mathrm{Cp} * \mathrm{Zr})_{4}\left(\mu_{5}-\mathrm{O}\right)\left(\mu_{3}-\mathrm{O}\right)_{2}(\mu-\right.\right.$ $\left.\left.\mathrm{OH})_{4}\right\}_{2} \mathrm{Zr}(\mu-\mathrm{O})_{4}\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}(\mathbf{2}$; Scheme 1). \ddagger Although the formation of 2 is elusive, it is most likely that the central Zr is introduced by the complete cleavage of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{ZrR}_{2}\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}\right.$, $\mathrm{MeC}_{5} \mathrm{H}_{4} ; \mathrm{R}=\mathrm{H}, \mathrm{Me}$). The OH protons on the surface of cluster 1 react with the R groups of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{ZrR}_{2}$ leading to the new $\mathrm{Zr}-\mathrm{O}$ bonds. This is presumably the first step of the reaction. Subsequently, these intermediates react with the elimination of the $\mathrm{Cp}^{\prime} \mathrm{H}$ and the degradation of cluster 1 with concomitant

Scheme 1 The H atoms bonded to O and the toluene molecules of $\mathbf{1}$ and $\mathbf{2}$ are omitted for clarity.

[^0]formation of 2. The elimination of the Cp^{\prime} groups during the preparation of $\mathbf{2}$ is similar to that observed in the preparation of $\left[\left\{\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Zr}\right\}_{5}\left(\mu_{5}-\mathrm{N}\right)\left(\mu_{3}-\mathrm{NH}\right)_{4}\left(\mu-\mathrm{NH}_{2}\right)_{4}\right]^{7}$ and $\left[(\mathrm{CpTi})_{6}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{8}\right],{ }^{8}$ where the starting materials are $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}$ and $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$, respectively. Evidently, the R groups are essential for the cleavage of $\mathrm{Cp}^{\prime}-\mathrm{Zr}$ bonds. It is possible that the two coordinatively unsaturated zirconium atoms in 1, resulting from the off-center interstitial $\mu_{4}-\mathrm{O}$ core structure, led to the degradation of the cluster when $\mathbf{1}$ was treated with an organometallic compound. The two units of cluster 2 should originate from at least two molecules of 1 , where the $\mu_{4}-\mathrm{O}$ becomes a $\mu_{5}-\mathrm{O}$ in 2 . Although the zirconium atoms increase from 6 (in 1) to 9 (in 2), the ratio of zirconium to oxygen in both compounds $(1: 2.17,1: 2)$ is nearly the same (the most stable compound $\left[\left\{\left(\mathrm{EtMe}_{4} \mathrm{C}_{5}\right) \mathrm{Zr}\right\}_{6}\left(\mu_{6}-\mathrm{O}\right)\left(\mu_{3}-\mathrm{O}\right)_{8}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ in this series contains a Zr : O ratio of $1: 1.5$). Therefore, it is predictable that within the $\mathrm{Zr}: \mathrm{O}$ ratios of $1: 1.5$ to $1: 2.17$ further polyoxozirconium hydroxides should exist.
Compound $\mathbf{2}$ is a colorless crystalline solid that melts above $410^{\circ} \mathrm{C}$. The IR spectrum of $\mathbf{2}$ shows a weak absorption at 3666 cm^{-1}, due to the $\mathrm{O}-\mathrm{H}$ bond.

The molecular structure of 2, shown in Fig. 1, consists of two highly distorted square pyramids with eight $\mathrm{Cp} * \mathrm{Zr}$ fragments and one Zr atom arranged around two interstitial $\mu_{5}-\mathrm{O}$ oxygen atoms.§ The central $\mathrm{Zr}(5)$ occupies the vertex shared by the two square pyramids forming the dumb-bell shaped core structure. The $\mathrm{Zr}(5)$ and the two $\mu_{5}-\mathrm{O}$ atoms are almost linearly arranged $\left(\left(\mu_{5}-\mathrm{O}\right)-\mathrm{Zr}(5)-\left(\mu_{5}-\mathrm{O}\right), 177.80(15)^{\circ}\right)$. The nine Zr atoms are bridged or capped by oxygen atoms resulting in two fourmembered $\mathrm{Zr}_{2}\left(\mu_{3}-\mathrm{O}\right)_{2}$, eight four-membered $\mathrm{Zr}(\mu-\mathrm{O}) \mathrm{Zr}\left(\mu_{3}-\mathrm{O}\right)$, eight four-membered $\operatorname{Zr}(\mu-\mathrm{O}) \mathrm{Zr}\left(\mu_{5}-\mathrm{O}\right)$, twelve four-membered

Fig. 1 A view of 2 with 50% thermal ellipsoids. H atoms bonded to C and O and the toluene molecules are omitted for clarity. Selected bond lengths (\AA) and angles (deg): $\mathrm{Zr}(1)-\mathrm{O}(1) 2.125(4), \mathrm{Zr}(1)-\mathrm{O}(2) 2.121(4), \mathrm{Zr}(1)-$ $\mathrm{O}(6) 2.159(4), \mathrm{Zr}(1)-\mathrm{O}(9)$ 2.144(4), $\mathrm{Zr}(1)-\mathrm{O}(3) 2.333(4), \mathrm{Zr}(2)-\mathrm{O}(4)$ 2.007(4), $\quad \mathrm{Zr}(5)-\mathrm{O}(4) \quad 2.057(4), \quad \mathrm{Zr}(5)-\mathrm{O}(3)$ 2.111(4), $\mathrm{Zr}(1) \cdots \mathrm{Zr}(2)$ $3.2092(11), \mathrm{Zr}(2) \cdots \mathrm{Zr}(5) 3.3109(9) ; \mathrm{O}(1)-\mathrm{Zr}(1)-\mathrm{O}(9) 79.12(15), \mathrm{O}(3)-$ $\mathrm{Zr}(1)-\mathrm{O}(6) \quad 72.20(14), \quad \mathrm{O}(1)-\mathrm{Zr}(1)-\mathrm{O}(2) \quad 79.82(15), \quad \mathrm{O}(1)-\mathrm{Zr}(1)-\mathrm{O}(3)$ $68.91(13), \mathrm{O}(3)-\mathrm{Zr}(2)-\mathrm{O}(4) 75.36(13), \mathrm{O}(3)-\mathrm{Zr}(5)-\mathrm{O}(4) 80.34(14), \mathrm{O}(3)-$ $\mathrm{Zr}(5)-\mathrm{O}(13) 177.80(15), \mathrm{Zr}(1)-\mathrm{O}(9)-\mathrm{Zr}(2) 96.13(16), \mathrm{Zr}(1)-\mathrm{O}(1)-\mathrm{Zr}(2)$ 95.88(15), $\mathrm{Zr}(1)-\mathrm{O}(3)-\mathrm{Zr}(2) \quad 86.11(12), \mathrm{Zr}(2)-\mathrm{O}(4)-\mathrm{Zr}(5) \quad 109.11(16)$, $\mathrm{Zr}(2)-\mathrm{O}(3)-\mathrm{Zr}(5) 85.18(14)$.
$\mathrm{Zr}\left(\mu_{3}-\mathrm{O}\right) \mathrm{Zr}\left(\mu_{5}-\mathrm{O}\right)$, and four four-membered $\mathrm{Zr}(5)\left(\mu-\mathrm{O}_{\mathrm{b}}\right) \mathrm{Zr}\left(\mu_{5^{-}}\right.$ O) rings ($\mathrm{O}_{\mathrm{b}}=\mathrm{O}(4), \mathrm{O}(8), \mathrm{O}(12)$, and $\left.\mathrm{O}(14)\right)$. The coordination sphere of each Zr atom on the surface of the core is completed by the Cp * ligand. The bond lengths of $\mathrm{Zr}-(\mu-\mathrm{O})(2.139(4)$ to $2.198(4) \AA$, av $2.169 \AA), \mathrm{Zr}-\left(\mu_{3}-\mathrm{O}\right)(2.108(4)$ to $2.197(4) \AA$, av $2.144 \AA)$, and $\mathrm{Zr}(5)-\left(\mu_{5}-\mathrm{O}\right)(2.111(4) \AA)$ are similar to the $\mathrm{Zr}-$ (μ-O) bond distances in $\mathbf{1}(2.072(2)$ to $2.171(2) \AA$, av $2.106 \AA$) and the $\mathrm{Zr}-\left(\mu_{3}-\mathrm{O}\right)$ bond lengths in $\left[\left\{\left(\mathrm{EtMe}_{4} \mathrm{C}_{5}\right) \mathrm{Zr}\right\}_{6}\left(\mu_{6}-\mathrm{O}\right)\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{8}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}(2.136(2)$ to $2.169(2) \AA$, av $2.156 \AA) .{ }^{5} \mathrm{The} \mathrm{Zr}-\left(\mu-\mathrm{O}_{\mathrm{b}}\right)$ bond lengths (1.985(4) to $2.070(4) \AA$, av $2.026 \AA$) are shorter than those of $\mathrm{Zr}-(\mu-\mathrm{O})$ in 2 and of $\mathrm{Zr}-(\mu-\mathrm{OH})$ in $\left[\{(\mathrm{Cp} * \mathrm{ZrCl})(\mu-\mathrm{OH})\}_{3}\left(\mu_{3}-\mathrm{OH}\right)\left(\mu_{3}-\mathrm{O}\right)\right] \cdot 2 \mathrm{THF} \quad(2.160(2) ~ \AA),{ }^{9}$ and are comparable with those in $\left[\left\{\mathrm{Cp}_{2} \mathrm{Zr}(\mu-\mathrm{O})\right\}_{3}\right](\mathrm{Zr}-(\mu-\mathrm{O})$ $1.959(3) \AA) .{ }^{10}$ Therefore, we assume that the eight hydrogen atoms of the OH groups are distributed over eight μ-O edges on the surface of the core. The $\mathrm{Zr}-\left(\mu_{5}-\mathrm{O}\right)$ bond lengths (2.275(4) to $2.432(2) \AA$, av $2.347 \AA$) of $\mathbf{2}$ are slightly longer than those found in $\left[\left\{\left(\mathrm{EtMe}_{4} \mathrm{C}_{5}\right) \mathrm{Zr}\right\}_{6}\left(\mu_{6}-\mathrm{O}\right)\left(\mu_{3}-\mathrm{O}\right)_{8}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}\left(\mathrm{Zr}-\left(\mu_{6}-\mathrm{O}\right) 2.231(2)\right.$ to $2.247(2) \AA$, av $2.241 \AA) .{ }^{5}$ The distances of the $(\operatorname{Zr}(5))$ center to the $(\mathrm{Zr}(2), \mathrm{Zr}(3), \mathrm{Zr}(6), \mathrm{Zr}(8) ;$ (3.3007(11) to $3.3123(12) \AA$, av 3.3077 A) are slightly longer than those of the adjacent Zr atoms on the core (3.1302 (9) to $3.2409(9)$, av $3.2031 \AA$) which are similar to those exhibited by $\left[\left\{\left(\mathrm{EtMe}_{4} \mathrm{C}_{5}\right) \mathrm{Zr}\right\}_{6}\left(\mu_{6}-\mathrm{O}\right)\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{8}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}(3.1542(9)$ to $3.1709(11) \AA$, av $3.1635 \AA$).
The $\mathrm{Zr}-\left(\mu_{3}-\mathrm{O}\right)-\mathrm{Zr}\left(95.07(14)\right.$ to $98.00(15)^{\circ}$, av $\left.96.20^{\circ}\right), \mathrm{Zr}-$ ($\mu-\mathrm{O})-\mathrm{Zr}\left(95.06(16)\right.$ to $96.82(16)^{\circ}$, av $\left.95.90^{\circ}\right)$, and $\mathrm{Zr}(5)-\left(\mu_{5}-\right.$ $\mathrm{O})-\mathrm{Zr}\left(93.36(14)\right.$ to $95.73(14)^{\circ}$, av 94.56°) angles are larger than $\mathrm{Zr}-\left(\mu_{5}-\mathrm{O}\right)-\mathrm{Zr}\left(85.19(12)\right.$ to $88.01(13)^{\circ}$, av $\left.86.39^{\circ}\right)$, but also smaller than the $\mathrm{Zr}(5)-\left(\mu-\mathrm{O}_{\mathrm{b}}\right)-\mathrm{Zr}$ angles (108.30(17) to $110.60(18)^{\circ}$, av $\left.109.47^{\circ}\right)$ and the $\mathrm{Zr}-(\mu-\mathrm{O})-\mathrm{Zr}$ angles in 1 ($118.70(14)$ to $122.78(12)^{\circ}$, av 120.56°). In addition, the ($\mu_{3^{-}}$ $\mathrm{O})-\mathrm{Zr}-\left(\mu_{3}-\mathrm{O}\right)\left(79.66(14)\right.$ to $80.32(15)^{\circ}$, av $\left.79.99^{\circ}\right)$, ($\left.\mu-\mathrm{O}\right)-\mathrm{Zr}-$ ($\mu_{3}-\mathrm{O}$) (75.94(15) to 79.12(15) ${ }^{\circ}$, av 77.66 $)$, and ($\left.\mu-\mathrm{O}_{\mathrm{b}}\right)-\mathrm{Zr}-$ ($\mu_{5}-\mathrm{O}$) (74.75(14) to $75.87(14)^{\circ}$, av 75.33°) angles are larger than those of $(\mu-\mathrm{O})-\mathrm{Zr}-\left(\mu_{5}-\mathrm{O}\right)\left(69.43(14)\right.$ to $72.86(14)^{\circ}$, av 71.35°) and ($\left.\mu_{3}-\mathrm{O}\right)-\mathrm{Zr}-\left(\mu_{5}-\mathrm{O}\right)\left(66.39(13)\right.$ to $70.03(13)^{\circ}$, av 68.64°), but smaller than ($\left.\mu-\mathrm{O}\right)-\mathrm{Zr}-(\mu-\mathrm{O})$ angle (82.76(6) to $88.94(10)^{\circ}$, av $\left.86.11^{\circ}\right)$ in 1 . Nonetheless, the $\left(\mu-\mathrm{O}_{\mathrm{b}}\right)-\mathrm{Zr}(5)-\left(\mu_{5}{ }^{-}\right.$ O) angles (80.03(15) to $81.30(15)^{\circ}$, av 80.64°; 97.99(15) to $100.67(15)^{\circ}$, av 99.36°) in 2 are not similar.

In summary, the treatment of the Brønsted acidic organozirconium hydroxide 1 with organometallic compounds provides a new route to larger polyoxometallic clusters that is otherwise difficult to achieve. Using this procedure, the largest organic polyoxozirconium cluster was prepared. According to the structure of 2, it seems that two spheres of the dumb-bell are arranged in such a way that they can be regarded as two pentazirconium clusters that share the same zirconium vertex. The eight hydrogen atoms of the OH groups are distributed over eight μ-O positions on the surface of the spheres. Due to the Lewis acidic zirconium centers, the $\mathrm{O}-\mathrm{H}$ groups of 2 are Brønsted acidic as evident in the IR spectrum of 2. ${ }^{11}$ The organic ligands and the reactive hydroxide groups on the cluster surface of $\mathbf{2}$ facilitate the solubility and further reactivity in solution. A wide variety of organometallic complexes should, therefore, react with the Brønsted acidic OH groups of $\mathbf{1}$ and 2 to produce soluble metal clusters. Unlike cluster 1, cluster 2 has no coordinatively unsaturated zirconium atoms and therefore its core is more stable kinetically.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support.

Notes and references

\ddagger Method A: A mixture of $\mathbf{1}(0.11 \mathrm{~g}, 0.06 \mathrm{mmol})$ and $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrH}_{2}(0.12$ $\mathrm{g}, 0.48 \mathrm{mmol})$ in toluene $(80 \mathrm{~mL})$ was stirred at room temperature for 48 h . After filtration, the colorless filtrate was concentrated and stored at $-20^{\circ} \mathrm{C}$ for three weeks. Colorless crystals of $2(0.04 \mathrm{~g}, 36 \%)$ were obtained. Method B: In a procedure similar to method A $1(0.176 \mathrm{~g}, 0.10 \mathrm{mmol})$ and $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}(0.20 \mathrm{~g}, 0.80 \mathrm{mmol})$ in toluene $(80 \mathrm{~mL})$ were stirred at room temperature for 48 h . Colorless crystals of $2(0.06 \mathrm{~g}, 32 \%)$ were obtained. $\mathrm{Mp}>410^{\circ} \mathrm{C}$. IR (Nujol): $3666 \mathrm{w}, 1260 \mathrm{~s}, 1092$ vs, 1019 vs, 798 vs, 732 $\mathrm{s} \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 2.12,1.54\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$. EI-MS: $\mathrm{m} / \mathrm{z}(\%)$: 1988 (1) $\left[\mathrm{M}-3 \mathrm{C}_{7} \mathrm{H}_{8}-\mathrm{Cp}^{*}-4 \mathrm{H}_{2} \mathrm{O}-3 \mathrm{H}\right]^{+}$, 1256 (2) $\left[\mathrm{M}-3 \mathrm{C}_{7} \mathrm{H}_{8}\right.$ $\left.-6 \mathrm{Cp}^{*}-7 \mathrm{H}_{2} \mathrm{O}-6 \mathrm{H}\right]^{+}$, 119 (100) $\left[\mathrm{Cp}^{*}-\mathrm{CH}_{4}\right]^{+}$. Anal. calcd. for $\mathrm{C}_{101} \mathrm{H}_{152} \mathrm{O}_{18} \mathrm{Zr}_{9}$ (2475.2): C, 49.0; H, 6.2. found: C, $48.1 ; \mathrm{H}, 5.4 \%$ (some toluene molecules in the crystal lattice presumably escaped during the evaporation of the solvent from the solution of $\mathbf{2}$ in vacuo).
§ Crystal data for $2: \mathrm{C}_{80} \mathrm{H}_{128} \mathrm{O}_{18} \mathrm{Zr}_{9} \cdot 3 \mathrm{C}_{7} \mathrm{H}_{8}$ (the eight hydrogen atoms of the hydroxide groups could not be determined by X-ray diffraction), $M=$ $2198.79+3 \times 92.14$, crystal size: $0.3 \times 0.2 \times 0.05 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$, unit cell dimensions: $a=20.269(4), b=16.745(3), c=$ $31.219(6) \AA, \beta=102.18(3)^{\circ}, V=10357(3) \AA^{3}, Z=4, \rho_{\text {calcd }}=1.587 \mathrm{Mg}$ $\mathrm{m}^{-3}, F(000)=5048, \lambda=0.71073 \AA, T=133(2) \mathrm{K}, \mu\left(\mathrm{Mo}_{\mathrm{K} \alpha}\right)=0.930$ mm^{-1}; total number of reflections measured 80494, unique $16554\left(R_{\text {int }}=\right.$ 0.0598). Data/restraints/parameters: 16554/270/1196, data collection range: $12.36 \leq 2 \theta \leq 49.86^{\circ}$, completeness to $\theta=24.93^{\circ}: 91.5 \% . R 1=0.0497$ for $I>2 \sigma(I), w R 2=0.1256$ for all data. The final difference Fourier synthesis gave a min./max. residual electron density: $+1.005 /-0.870 \mathrm{e}^{\AA} \AA^{-3}$. Diffraction data were collected on a Stoe-Siemens-Huber four-circlediffractometer coupled to a Siemens CCD area detector with graphitemonochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, performing φ and ω scans. The structure was solved by direct methods using SHELXS-97 and refined against F^{2} on all data by full-matrix least-squares with SHELXS-97. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms bonded to carbon were included in the model at geometrically calculated positions and refined using a riding model. CCDC reference number 191340. See http:// www.rsc.org/suppdata/cc/b2/b212281b/ for crystallographic data in CIF or other electronic format.

1 (a) P. Gouzerh and A. Proust, Chem. Rev., 1998, 98, 77; (b) G. Kickelbick and U. Schubert, Monatsh. Chem., 2001, 132, 13; (c) F. Bottomley, Polyhedron, 1992, 11, 1707; (d) V. W. Day and W. G. Klemperer, Science, 1985, 228, 533; (e) M. Poh1, D. K. Lyon, N. Mizuno, K. Nomiya and R. G. Finke, Inorg. Chem., 1995, 34, 1413.
2 (a) M. Anpo and T. Nomura, Res. Chem. Intermed., 1990, 13, 195; (b) J. Kondo, K. Domen and T. Onishi, Res. Chem. Intermed., 1993, 19, 521; (c) S.-C. Moon, M. Fujino, H. Yamashita and M. Anpo, J. Phys. Chem. B, 1997, 101, 369; (d) K. Kaneda, Y. Kawanishi and S. Teranishi, Chem. Lett., 1984, 1481.
3 F. Bottomley and L. Sutin, Adv. Organomet. Chem., 1988, 28, 339.
4 L. M. Babcock, V. W. Day and W. G. Klemperer, Inorg. Chem., 1989, 28, 806.
5 G. Bai, H. W. Roesky, P. Lobinger, M. Noltemeyer and H.-G. Schmidt, Angew. Chem., 2001, 113, 2214; G. Bai, H. W. Roesky, P. Lobinger, M. Noltemeyer and H.-G. Schmidt, Angew. Chem., Int. Ed., 2001, 40, 2156.

6 G. Bai, H. W. Roesky, J. Li, T. Labahn, F. Cimpoesu and J. Magull, Organometallics, submitted.
7 G. Bai, P. Müller, H. W. Roesky and I. Usón, Organometallics, 2000, 19, 4675.
8 J. C. Huffman, J. G. Stone, W. C. Krusel and K. G. Caulton, J. Am. Chem. Soc., 1977, 99, 5829.
9 L. M. Babcock, V. W. Day and W. G. Klemperer, J. Chem. Soc., Chem. Comтип., 1988, 519.
10 G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Soc., 1979, 101, 1767.
11 G. Sastre and D. W. Lewis, J. Chem. Soc., Faraday Trans., 1998, 94, 3049.

[^0]: \dagger Dedicated to Professor C. N. R. Rao on the occasion of his 70th birthday.

