
    

Aluminium fluorescence detection with a FRET amplified chemosensor†
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A selective Al3+ fluorescence chemosensor able to detect
concentrations of metal ion in the nanomolar range has been
realized. The remarkable sensitivity is the result of the FRET
amplification of the fluorescence emission of the ligand
subunit.

There is an increasing interest in the realization of fluorescent
chemosensors, i.e., structurally simple supramolecular systems
that can effectively signal the complexation of a proper guest
and provide an extremely sensitive and selective method to
recognize and evaluate the concentration of different sub-
strates.1 The design of such chemosensors faces a key problem
related to the implementation of an efficient transduction
mechanism, which converts the binding of the substrate into a
modification of the fluorescence emission of the sensor.1b

Several mechanisms for signal transduction have been exploited
and, among them, one of the most reliable implies a direct
interaction between the bound substrate and the conjugated
electronic system of the fluorophore.2 This strategy, although
successfully employed in the realization of several efficient
chemosensors,1c is far from straightforward. In fact, on the one
hand, it implies the not so trivial transformation of a fluorescent
dye into a ligand selective for the desired substrate and, on the
other hand, the desired photophysical properties cannot easily
be predicted so as to encourage the needed synthetic effort.

Here we describe the fluorescent molecular species 1 not only
as a very effective chemosensor for Al3+ but as an example of
a novel and promising strategy for the realization of an intrinsic
chemosensor. In the present case, in fact, a selective ligand with
poor sensing properties has been converted into an efficient
chemosensor by the introduction of a fluorescence resonance
energy transfer (FRET) amplification of the produced signal.3

The metal complexing properties of 3,5-bis(o-hydroxyphe-
nyl)-1,2,4-triazole substituted with benzoic acid (2) in solution
have been previously investigated by Hegetschweiler and
coworkers. Their studies4 revealed that 2 shows an un-
expectedly high affinity for the Al3+ ion, probably due to the
ideal preorientation of the ligand donor set.

The detection of Al3+ is of great interest because of the
potential toxicity and the widespread presence of this ion.5 We
reasoned that, in analogy with related biarylpyridines,6 ligands
2 and 3 could display an enhanced fluorescence emission as a
consequence of the binding of the metal ion, due both to the
system rigidification and/or the formation of an emissive charge
transfer emission state.6 In fact, we found that 3 alone, in a 1 :
1 water–ethanol solution buffered at pH 5.0, does not show any
significant fluorescence emission. On the other hand, upon
addition of Al3+ ions, we observed the appearance of an
emission band centred at 445 nm (Fig. 1)7 which is, however,
too weak to allow the detection of the metal ion with high
sensitivity.

Based on these preliminary results, we designed sensor 1, in
which a fluorophore, Coumarin 343, is connected to the benzoic

acid moiety of ligand 2 via an ethylene spacer.8 The absorbance
of Coumarin 343 overlaps very well with the weak emission of
the 3–Al3+ complex which can hence act as a donor in a FRET
process (Fig. 1). As the FRET process is usually more efficient
than non-radiative decay processes,9 we anticipated that the
added fluorophore would strongly amplify the fluorescence
signal emitted by the ligand upon binding of Al3+.

This turned out as expected. As shown in Fig. 2, the
spectrofluorimetric titration of a 3.1 µM solution of receptor 1
in water–ethanol 1 : 1, buffered at pH 5.0, with Al(NO3)3 shows
an increase of the intensity of the coumarin fluorescence
emission band at 489 nm (excitation at 350 nm) up to 700%. As
a result, Al3+ concentrations as low as 50 nM can be detected
(5% increment of the sensor fluorescence emission). Inter-
polation of the emission intensity versus Al3+ concentration
data, assuming a 1 : 1 binding model, gives a good fit and allows
estimation of a log Kapp value of 5.8 ± 0.1. The kinetics of
complex formation were measured spectrophotometrically at
pH 5 and the second order rate constant, k2 = 1.3 3 103 s21

M21,10 was determined.
In contrast, addition of Al3+ ions has no effect on the emission

spectra of 1 when the sensor is irradiated at 445 nm which is the

† Electronic supplementary information (ESI) available: experimental
details and spectra. See http://www.rsc.org/suppdata/cc/b3/b303195k/

Fig. 1 Fluorescence emission spectra (lexc = 350 nm) of ligand 3 in the
presence of increasing amounts of Al(NO3)3 in EtOH–H2O (1 : 1) at pH =
5.0. [1] = 8.7 3 1026 M, [acetate buffer] = 0.01 M. The dotted line is the
absorption spectrum of Coumarin 343.
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typical excitation wavelength for the Coumarin 343 dye (Fig. 2,
inset). This clearly indicates that the fluorescence enhancement
observed is due to the FRET process between the ligand subunit
and the dye and not to a direct interaction of the metal ion with
the latter. Also a mechanism involving the suppression of a pre-
existing quenching process of the coumarin emission by the
phenolic moiety of the ligand subunit can be excluded on the
basis of this observation.11

To test the sensor selectivity, compound 1 was titrated with
different metal ions (Fig. 3). The addition of Mg2+, Ca2+, Ni2+,
and Zn2+ did not produce any effect on the emission intensity of
the system in the concentration range explored (up to 2 3 1025

M). Titration of 1 with Al3+ in the presence of 10 equiv. of these
ions gives the same fluorescence increase as in the absence of
these ions (see Supplementary Information†). The selectivity is
hence to be ascribed to the very low affinity of the above metal
ions for the ligand. However, as typically observed for Al3+

ligands, interference was observed with Cu2+ and Fe3+ although
to a different extent. Addition of these ions to a solution of
receptor 1 leads to a significant quenching of the fluorescence
intensity (respectively 70% and 75% of the initial value). In the
case of Cu2+, a log Kapp of 6.9 for the 1 : 1 complex was
determined, while in the case of Fe3+ the formation of 1 : 1 and
2 : 1 (ligand to metal) complexes was detected with log Kapp
values of 5.6 and 9.5 respectively.12 As expected, in the
presence of 10 equiv. of the interfering metal ions, no
fluorescence increase is observed after Al3+ addition in the case
of Cu2+, while in that of Fe3+ the fluorescence increase is about
one third of that observed in the absence of the metal ion (see
Supplementary Information†). However, appropriate proce-
dures have been reported to eliminate or mask these ions from
Al3+ containing samples.4a

In conclusion, we have presented the fluorescent chem-
osensor 1 that operates with an innovative FRET-based
amplification mechanism and is able to recognise Al3+ with

high affinity and selectivity. Chelation enhanced fluorescence
(CHEF) is a further valuable property of the system.1c The
proposed transduction mechanism is based on the binding
induced fluorescence activation of the ligand subunit followed
by energy transfer between the ligand and the attached
fluorophore which results in signal amplification. This in-
novative design is of general application in the realization of
other intrinsic chemosensors, because amplification of the
fluorescent signal by a FRET mechanism allows the use of
ligand subunits which are characterized by a strong and
selective binding of the substrate but by poor fluorescent
properties.
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Fig. 2 Fluorescence emission spectra (lexc = 350 nm) of sensor 1 in the
presence of increasing amounts of Al(NO3)3 in EtOH–H2O (1 : 1) at pH =
5.0. [1] = 3.1 3 1026 M, [acetate buffer] = 0.01 M. Inset: spectrofluori-
metric titration curve at lexc = 350 nm (5) and lexc = 445 nm (Ω). n =
number of added equivalents of Al3+.

Fig. 3 Spectrofluorimetric titration of 1 at pH 5.0 with different metal ions:
Al3+ (5), Mg2+ (< ), Ca2+ (x), Ni2+ (.), Zn2+ (Ω), Fe3+ (0) and Cu2+ (2).
n = number of added equivalents of metal ion. [Acetate buffer] = 0.01 M,
[1] = 3.3 3 1026 M (lexc = 350 nm).
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