A comparison of the photochemical reactivity of $N@C_{60}$ and C_{60} : photolysis with disilirane[†]

Takatsugu Wakahara,^a Yoichiro Matsunaga,^a Akira Katayama,^b Yutaka Maeda,^a Masahiro Kako,^c Takeshi Akasaka,^{*a} Mutsuo Okamura,^b Tatsuhisa Kato,^d Yoong-Kee Choe,^d Kaoru Kobayashi,^d Shigeru Nagase,^{*d} Houjin Huang^e and Masafumi Ata^e

- ^a Center for Tsukuba Advanced Research Alliance, Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- ^b Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- ^c Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- ^d Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- ^e Materials Laboratories, Sony Corporation, Yokohama, Kanagawa, 240-0036, Japan

Received (in Cambridge, UK) 8th August 2003, Accepted 23rd September 2003 First published as an Advance Article on the web 21st October 2003

 $N@C_{60}$ has a lower photochemical reactivity toward disilirane than C_{60} , although $N@C_{60}$ does not differ from C_{60} in its thermal reactivity; theoretical calculations reveal that $N@C_{60}$ and C_{60} have the same orbital levels and that $N@^{3}C_{60}^{*}$ has a shorter lifetime than ${}^{3}C_{60}^{*}$.

In 1996, Weidinger and co-workers reported the first synthesis and characterization of N@C₆₀.^{1,2} It is particularly surprising that the encapsulated nitrogen exists as a single atom in the quartet ground state. Current synthetic methods have typical yields of less than 10^{-2} moles,^{3,4} but EPR is sensitive enough to detect these paramagnetic species at a low concentration. Since the N atom is located on average at the center of C₆₀, an EPR spectrum that consists of three sharp hyperfine peaks is observed.¹ The spin density is exclusively localized in the neighborhood of the N atom.⁵ No charge transfer from N to C₆₀ is observed in N@C₆₀ because of the high ionization potential of the N atom, as in the He@C₆₀ case.⁶

Hirsch and co-workers reported that the nucleophilic cyclopropanation of N@C₆₀ with diethyl bromomalonate affords the exohedral mono-adduct, N@C₆₁(COOEt)₂, using the Bingel– Hirsch reaction.⁷ EPR investigations showed that the hyperfine constant and electronic *g*-factor are equal to those of the unmodified N@C₆₀ within experimental error. These results demonstrated that the average position of the N atom is still oncenter in N@C₆₁(COOEt)₂. They also reported that the thermal reactivity of N@C₆₀ is indistinguishable from that of C₆₀ during nucleophilic cyclopropanation.⁷

In our series of studies on the chemical functionalization of fullerenes with organosilicon compounds, we have reported the photochemical bis-silylation of C_{60} ,⁸ higher fullerenes,⁹ and endohedral metallofullerenes¹⁰ with disilirane. In this context, it is worth noting that disilirane can act as a mechanistic probe to clarify the electronic and chemical characteristics of fullerenes. We now report the bis-silylation of N@C₆₀ with disilirane to clarify the photochemical reactivity of N@C₆₀ compared with C_{60} .

The photoirradiation (>400 nm) of a toluene solution of 1,1,2,2-tetramesityl-1,2-disilirane **1** (1.8 mg, 1.4×10^{-3} M) and a N@C₆₀-C₆₀¹¹ mixture (2.3 mg, 1.4×10^{-3} M) gave a mixture of 1,1,3,3-tetramesityl-1,3-disilolane **2** and unreacted N@C₆₀-C₆₀ (Scheme 1). The reaction mixture was injected into a JAI Gel 1H + 2H column, and **2** (63%) and unreacted N@C₆₀-C₆₀ (32%) were recovered. The mono-adduct **2** was fully characterized by UV-vis, ¹H NMR, and LD-TOF mass spectroscopies.⁸

Fig. 1(a) shows the EPR spectrum of 2 in CS_2 at 293 K. The atomic character of the encapsulated nitrogen is preserved in 2

† Electronic supplementary information (ESI) available: experimental results. See http://www.rsc.org/suppdata/cc/b3/b309470g/ as well as during the reaction and work up steps. The hyperfine constant and electronic *g*-factor of **2** are within experimental uncertainty equal to the values for the unmodified N@C₆₀. This indicates that the average position of the N atom is still oncenter in **2**. At 80 K, the EPR spectrum of **2** in CS₂ shows a new feature (Fig. 2(b)), which reveals the actual formation of the N@C₆₀ adduct. This low-temperature EPR measurement also confirmed the Bingel–Hirsch cyclopropanation of N@C₆₀.⁷

Interestingly, the signal intensity of **2** is obviously smaller than that of N@C₆₀ used in this reaction. This indicates that N@C₆₀ has a lower photochemical reactivity than the empty C₆₀. This is a remarkable difference as N@C₆₀ does not differ from C₆₀ in its thermal reactivity.⁷ We determined the concentration of N@C₆₀ in the recovered N@C₆₀–C₆₀ by EPR measurement. The ratio of N@C₆₀ and C₆₀ in the starting and recovered N@C₆₀–C₆₀ is about 1 : 1.6. We have obtained the

Fig. 1 EPR spectra of (a) the mono-adduct (2) in CS_2 and (b) $N@C_{60}$ in toluene at 293 K.

Fig. 2 EPR spectra of the mono-adduct (2) in CS_2 (a) at 293 K and (b) at 80 K. * = impurity.

relative reactivity of $N@C_{60}-C_{60}$ by the following calculation: $[100 - (32 \times 1.6)]\%/(100-32)\% = 0.7$.

Up to now, based on control experiments and laser flash photolysis, it has been believed that the bis-silvlation reaction of C_{60} with disilirane **1** proceeds by electron transfer from **1** to ${}^{3}C_{60}^{*}$ via an exciplex.¹³ The significant difference in the photochemical reactivity of N@C₆₀ and C₆₀ may be ascribed to (i) the different excitation energies of $N@C_{60}$ and C_{60} or (ii) the faster quenching of N@3C60*. Theoretical calculations reveal that $N@C_{60}$ and C_{60} have the same orbital levels, as shown in Fig. 3, and that the N atom does not move to an off-center position to obtain stronger interactions, even in N@3C60*.14 It is likely that the three parallel spins on the N atom play an important role in the decay of N@3C60*. In fact, preliminary calculations of spin orbit interactions show that the spin orbit coupling between the excited $\Psi(N@^{3}C_{60}*)$ and ground $\Psi(N@C_{60})$ states is larger than the corresponding coupling between $\Psi({}^{3}C_{60}^{*})$ and $\Psi(C_{60})$,¹⁵ which suggests that N@ ${}^{3}C_{60}^{*}$ has a shorter lifetime than ${}^{3}C_{60}^{*}$.

Bis-silylated N@C₆₀ has been successfully prepared and characterized. Even in an electron-rich fullerene cage, the N atom is located on average at the center of C_{60} . A notable

				-0.96	-0.96
				-2.04	-2.04
				-3.22	-3.22
₩		-‡↓-	₩ ₩	-5.98	-5.98
₩		1	+↓ +↓	-7.31	-7.31
₩	#		# #	-7.34	-7.34
				C ₆₀	N@C ₆₀

Fig. 3 Orbital energies of $N@C_{60}$ and C_{60} calculated at the B3LYP/6-31G* level in eV.

finding is that N@C₆₀ has a lower photochemical reactivity toward disilirane than C₆₀. In this context, detailed photophysical kinetic studies of absorption and fluorescence processes would help to make possible a comprehensive understanding of the photochemical reactivity of N@C₆₀.¹⁶

This work was supported in part by a Grant-in-Aid for the 21st Century COE Program "Promotion of Creative Interdisciplinary Materials Science", the NAREGI Nanoscience Project, and the Nanotechnology Support Project from the Ministry of Education, Culture, Sports, Science and Technology.

Notes and references

- T. M. Almeida, Th. Pawlik, A. Weidinger, M. Höhne, R. Alcala and J. M. Spaeth, *Phys. Rev. Lett.*, 1996, **77**, 1075.
- 2 For a review, see: *Endofullerenes: A New Family of Carbon Clusters*, ed. T. Akasaka and S. Nagase, Kluwer Academic Publishers, Dordrecht, 2002.
- 3 K. Lips, M. Waiblinger, B. Pietzak and A. Weidinger, *Phys. Status Solidi A*, 2000, **177**, 81.
- 4 T. Suetsuna, N. Dragoe, W. Harneit, A. Weidinger, H. Shimotani, S. Ito, H. Takagi and K. Kitazawa, *Chem. Eur. J.*, 2002, 8, 5080.
- 5 K. Kobayashi, S. Nagase and K.-P. Dinse, *Chem. Phys. Lett.*, 2003, 377, 93.
- 6 M. Saunders, H. A. Jiménez-Vázquez, R. J. Cross and R. J. Poreda, Science, 1993, 259, 1428.
- 7 B. Pietzak, M. Waiblinger, T. M. Almeida, A. Weidinger, M. Höhne, E. Dietel and A. Hirsch, *Chem. Phys. Lett.*, 1997, **279**, 259.
- 8 T. Akasaka, W. Ando, K. Kobayashi and S. Nagase, J. Am. Chem. Soc., 1993, 115, 10366.
- 9 (a) A. Han, T. Wakahara, Y. Maeda, Y. Niino, T. Akasaka, K. Yamamoto, M. Kako, Y. Nakadaira, K. Kobayashi and S. Nagase, *Chem. Lett.*, 2001, 974; (b) T. Akasaka, E. Mitsuhida, W. Ando, K. Kobayashi and S. Nagase, *J. Am. Chem. Soc.*, 1994, **116**, 2627; (c) T. Wakahara, A. Han, Y. Niino, Y. Maeda, T. Akasaka, T. Suzuki, K. Yamamoto, M. Kako, Y. Nakadaira, K. Kobayashi and S. Nagase, *J. Mater. Chem.*, 2002, **12**, 2061; (d) T. Wakahara, A. Han, Y. Maeda, Y. Niino, T. Akasaka, K. Yamamoto, M. Kako, Y. Nakadaira, K. Kobayashi and S. Nagase, *J. Mater. Chem.*, 2002, **12**, 2061; (d) T. Wakahara, A. Han, Y. Maeda, Y. Niino, T. Akasaka, K. Yamamoto, M. Kako, Y. Nakadaira, K. Kobayashi and S. Nagase, *ITE Lett.*, 2001, **2**, 649.
- 10 (a) T. Akasaka, T. Kato, K. Kobayashi, S. Nagase, K. Yamamoto, H. Funasaka and T. Takahashi, *Nature*, 1995, **374**, 600; (b) T. Akasaka, S. Nagase, K. Kobayashi, T. Suzuki, T. Kato, K. Yamamoto, H. Funasaka and T. Takahashi, J. Chem. Soc., Chem. Commun., 1995, 1343; (c) T. Akasaka, S. Okubo, M. Kondo, Y. Maeda, T. Wakahara, T. Kato, T. Suzuki, K. Yamamoto, K. Kobayashi and S. Nagase, Chem. Phys. Lett., 2000, **319**, 153; (d) T. Akasaka, T. Kato, S. Nagase, K. Kobayashi, K. Yamamoto, H. Funasaka and T. Takahashi, Tetrahedron, 1996, **52**, 5015; (e) T. Akasaka, S. Nagase, K. Kobayashi, T. Suzuki, T. Kato, K. Kikuchi, Y. Achiba, K. Yamamoto, H. Funasaka and T. Takahashi, Angew. Chem., Int. Ed. Engl., 1995, **34**, 2139.
- 11 N@C₆₀ was prepared by glow discharge¹ and by using the rf-plasma¹² method. As for enrichment of N@C₆₀, two PYE columns (20×250 mm) were used for HPLC separation using toluene as eluent.
- 12 H. Huang, M. Ata and M. Ramm, Chem. Commun., 2002, 2178.
- 13 (a) T. Akasaka, Y. Maeda, T. Wakahara, M. Okamura, M. Fujitsuka, O. Ito, K. Kobayashi, S. Nagase, M. Kako, Y. Nakadaira and E. Horn, Org. Lett., 1999, 1, 1509; (b) M. Fujitsuka, O. Ito, Y. Maeda, M. Kako, T. Wakahara and T. Akasaka, Phys. Chem. Chem. Phys., 1999, 1, 3527.
- 14 Geometries were optimized with hybrid density functional theory at the B3LYP/6-31G* level, using the Gaussian 98 program.
- 15 The calculations were carried out at the CASSCF/3-21G//B3LYP/ 6-31G* level using the GAMESS program: CASSCF(10,8) for C₆₀ and CASSCF(13,11) for N@ C₆₀.
- 16 It has been reported that the nonradiative decay of the triplet state of Kr@C₆₀ is accelerated by approximately 12% relative to C₆₀ at 77 K owing to the heavy-atom effect: K. Yamamoto, M. Saunders, A. Khong, R. J. Cross, M. Grayson, M. L. Gross, A. F. Benedetto and R. B. Weisman, *J. Am. Chem. Soc.*, 1999, **121**, 1591. Obviously, the heavy atom effect is much less important for N@C₆₀ because N is lighter than Kr.