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The in vitro kinetics of inactivation of both wild-type and I21V
InhA enzymes by [FeII(CN)5(INH)]32 indicate that this process
requires no activation by KatG, and no need for the presence of
NADH. This inorganic complex may represent a new class of
lead compounds to the development of anti-tubercular agents
aiming at inhibition of a validated target.

In 1952 isoniazid (INH, isonicotinic acid hydrazide) was first
reported to be effective in the treatment of tuberculosis.1 However,
strains of Mycobacterium tuberculosis, the causative agent of the
disease, resistant to INH were reported shortly after its introduc-
tion.2 The primary mechanism of multiple drug resistance in M.
tuberculosis is the accumulation of mutations in individual drug
target genes.3 The mechanism of action of INH is complex, as
mutations in at least five different genes (katG, inhA, ahpC, kasA,
and ndh) have been found to correlate with isoniazid resistance.4
The primary target of INH has been shown to be the product of the
inhA structural gene.5 The inhA gene codes for an NADH-
dependent 2-trans-enoyl-ACP (CoA) reductase that exhibits speci-
ficity for long chain (C18 > C16) enoyl thioester substrates,6
consistent with its role in mycobacterial cell wall biosynthesis.7
Missense mutations in the inhA structural gene, but lacking
mutations in the inhA promoter region, katG gene and oxyR-ahpC
region, were identified in INH-resistant clinical isolates of M.
tuberculosis8 and shown to correlate with changes in the NADH
binding properties of enoyl reductase.9 Moreover, deletions of, or
missense mutations in, the katG gene have been associated with
decreased susceptibility to INH in approximately 50% of clinical
isolates of M. tuberculosis.10 The isoniazid mechanism of action
involves the conversion of INH by the mycobacterial katG-encoded
catalase-peroxidase into a number of electrophilic intermediates.11

Although isoniazid does not bind to the inhA-encoded enoyl
reductase,12 the KatG-activated drug intermediate binds to, and
inhibits the enoyl reductase activity in the presence of NAD+ or
NADH.13 The three-dimensional structure determination of WT
InhA, NADH, and activated isoniazid intermediate ternary com-
plex has shown that the acylpyridine fragment of isoniazid is
covalently attached to the C4 position of NADH.14 This iso-
nicotinyl-NAD+ adduct binds to WT InhA with a dissociation
constant value lower than 0.4 nM.15 Isoniazid is, therefore, a KatG-
activated pro-drug, that upon formation of an isonicotinyl-NAD+

adduct inhibits the M. tuberculosis enoyl reductase, resulting in
reduction of mycolic acid synthesis. In trying to find better
alternatives to INH, we have investigated an INH analog that
contains a cyanoferrate moiety (1) and tested its ability to inhibit
both WT and isoniazid-resistant I21V mutant enoyl reductases
from M. tuberculosis. Incubation of WT InhA with Na3[FeII(C-
N)5(INH)]·4H2O16 in the absence of NADH resulted in the time-
dependent inactivation of the enzyme with an apparent first-order

rate constant value of 327 (± 34) 3 1023 min21 (Fig. 1A, l inset;
t1/2 = 2.1 ± 0.2 min).

The rate constant values were 65 (± 4) 3 1023 min21 (Fig. 1A,
- inset; t1/2 = 10.7 ± 0.7 min) in the presence of 10 mM NADH and
15.7 (± 0.7) 3 1023 min21 (Fig. 1A, : inset; t1/2 = 44 ± 2 min) in
the presence of 100 mM NADH. Inactivation of WT InhA by
oxidized INH derivatives produced by KatG in the absence of
NADH has been reported not to occur at detectable levels in the
time range tested here (25–30 min).9,21 Moreover, a value of 8.9 3
1023 min21 has been reported for the rate constant for WT InhA
enzyme inactivation by KatG-activated isoniazid in the presence of
100 mM NADH.9

The results presented here clearly demonstrate that WT InhA
inactivation by [FeII(CN)5(INH)]32 requires no activation by KatG,

Fig. 1 (A) Inactivation of WT InhA (3 mM) by [FeII(CN)5(INH)]32 (100
mM):18 5, no NADH; -, 10 mM NADH; :, 100 mM NADH. The inset
shows a plot of the natural log of the percentage of WT InhA activity
remaining (%AR) versus time in the absence (5), presence of 10 mM
NADH (-), and presence of 100 mM NADH (:). (B) Inactivation of I21V
InhA under the same experimental conditions described in part A (except
that WT InhA was replaced for I21V InhA): no NADH (5), 10 mM NADH
(-); and 100 mM NADH (:). The inset shows a plot of the natural log of
the percentage of I21V InhA activity remaining (%AR) versus time in the
absence (5), presence of 10 mM NADH (-), and presence of 100 mM
NADH (:).
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no need for the presence of NADH, and its mechanism of action
probably involves interaction with the NADH binding site of the
enzyme. The in vitro kinetics of inactivation of the I21V mutant
enzyme, under identical conditions, proceeded with apparent first-
order rate constant values of 315 (± 38) 3 1023 min21 (Fig. 1B, 5
inset; t1/2 = 2.2 ± 0.3 min) in the absence of NADH, 99 (± 4) 3
1023 min21 (Fig. 1B, - inset; t1/2 = 7.0 ± 0.3 min) in the presence
of 10 mM NADH, and 14 (± 1) 3 1023 min21 (Fig. 1B, : inset; t1/2

= 50 ± 3 min) in the presence of 100 mM NADH. As for the WT
InhA enzyme, these results demonstrate that inactivation of I21V
mutant enzyme from a INH-resistant clinical isolate of M.
tuberculosis by [FeII(CN)5(INH)]32 requires no activation by
KatG, no need for NADH, and probably the same site of
interaction. Interestingly, since the in vivo NADH concentration in
M. tuberculosis H37Rv has been estimated to be < 10 mM,22 the
inorganic complex would probably display a better efficacy against
isoniazid-resistant M. tuberculosis strains harboring inhA structural
gene mutations than WT InhA strains. In order to verify if slow
formation of a covalent binary compound between [FeII(C-
N)5(INH)]32 and NADH could result in inactivation of WT and
I21V enzymes, pre-incubation experiments23 were performed and
the kinetics of inactivation followed for WT and I21V enzymes.
Apparent first-order rate constant of inactivation values of 15 (± 1)
3 1023 min21 and 13 (± 2) 3 1023 min21 were obtained for,
respectively, WT and I21V InhA enzymes (data not shown). These
values are within standard error of the ones determined with no pre-
incubation suggesting that there is no slow formation of an
intermediate compound capable of inactivating WT and I21V
enzymatic activities.

An MIC value of 0.2 mg mL21 for the [FeII(CN)5(INH)]32

compound was determined by the radiometric BACTEC AFB
system.24 M. tuberculosis is susceptible to isoniazid in the range of
0.02–0.2 mg mL21.26 Accordingly, the [FeII(CN)5(INH)]32 com-
pound appears to be a promising candidate for further anti-
tubercular drug development and may represent a new class of lead
compounds. Efforts to obtain crystals of the binary complex formed
between this inorganic compound and either WT or I21V InhA are
currently underway and should assist in the design of a new class of
antimycobacterial agents.
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