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The intrinsic electrical conductivity of a,w-alkanedithiol in-
creases if both ends of the molecule are covalently bonded to
metallic contacts.

The effect of a covalent bond between the molecule and a metal
electrode on the intrinsic electrical properties of a molecule
continues to attract considerable scientific interest.1,2

In this communication we report electrical characterization of a
novel electrochemically controlled macroscopic Hg–(monolayer of
n-alkanethiol or a,w-alkanedithiol)–Ag tunneling junction. Our
experimental approach allows us to induce, in situ, the formation of
the S–Hg bond within the macroscopic Ag–a,w-alkanedithiol
monolayer/Hg junction while measuring the tunneling current
across the monolayer.

Our data show that: (1) the conductivity of a fully bonded Ag–
a,w-alkanedithiol monolayer–Hg junction is at least 8–95 fold
larger then the conductivity of an a,w-alkanedithiol monolayer
bonded to the Ag electrode only, and (2) the tunneling decay
coefficient, b, is smaller for a fully bonded system indicating a
lower energy barrier for long-range electron tunneling.

The Hg/(monolayer or bilayer of organic molecules)/Ele (Ele =
Ag, Au, Hg, Si or C) junctions provide a convenient tool to study
the effects of the molecular structure and the nature of the electrode/
molecule interface on the rates of long-range electron tunneling.3

Our experimental approach involves the electrochemically
controlled tunneling junction schematically shown in Fig. 1.

The silver electrode is covered with a self-assembled monolayer
of a,w-alkanethiol or n-alkanethiol and is immersed in a deoxygen-
ated water solution containing supporting electrolyte.4 The Hg and
Ag electrodes are polarized independently and simultaneously to
the different electrochemical potentials. Subsequently, the Hg drop
extruded at the tip of the “L shaped” glass capillary is horizontally
brought into contact with the monolayer modified Ag surface using

a micromanipulator. The final surface area of the resulting
tunneling junction is equal to ca. 0.001 cm2.5 The voltage bias, E =
EAg 2 EHg, causes the flow of tunneling current across the
monolayer that can be measured as a function of time as illustrated
in Fig. 2.6

The tunneling current, I, recorded in the experiments shown in
Fig. 2 depends exponentially on the distance between the electrodes
and it also depends, in a more complex manner, on the voltage
applied between the electrodes [eqn. (1)]:1–3

I(E) = P(E) exp [2b(E)·d] (1)

where E is the voltage applied across the junction, P is the
preexponential factor, b is the tunneling coefficient and d is the
distance between the electrodes.

As shown schematically in Fig. 1, the terminal –SH groups react
with the Hg surface upon physical contact according to the reaction
(2):8

n R–SH + Hg ? (R–S)nHg + nH+ + ne2 EA ≈ 21 V vs. SSCE
(2)

where EA is the potential of the oxidative adsorption of R–SH.8
Reaction (2), however, can be thermodynamically allowed or

prevented by applying an appropriate electrochemical potential to
the mercury drop. In particular, reaction (2) would not occur if the
Hg electrode is polarized to a potential substantially more negative
than EA. In the assembled junction with EHg < EA (Fig. 1) the
terminal –SH groups would be in physical contact with the Hg
surface but the –S–Hg bond would not be formed.

The analysis of the data presented in Fig. 2 clearly indicates that
a substantially larger tunneling currents flow if the Hg electrode is
polarized to a potential allowing reaction (2) to occur. To study
systematically the effect of S–Hg bond formation on the efficiency
of electron tunneling through monolayers of various thicknesses,
we have investigated three molecular systems based on Ag/Hg
tunneling junctions. Fig. 3 shows a plot of the logarithm of
tunneling current recorded at 0.4 V voltage bias as a function of the
length of a molecule for: (A) a,w-alkanedithiol for EHg < EA, (B)
n-alkanethiol regardless of the value of EHg potential, and (C) a,w-
alkanedithiol for EHg > EA.9

Fig. 1 Scheme of an electrochemically controlled Ag/Hg tunnelling
junction. The experiment is performed in a thiol-free 1 M KOH or 1 M
LiClO4 water solution. The Ag electrode is covered with a self-assembled
monolayer of n-alkanethiol, CnH2n+1 SH (n = 10–18) or a,w-alkanedithiol,
HS-(CH2)n-SH (n = 9–20). The Ag and Hg electrodes are held at constant
potentials (EHg, EAg). All potentials are measured and reported vs. Ag/AgCl,
Cl2 (sat.) (SSCE) reference electrode. The C is a counter platinum
electrode.

Fig. 2 Current–time curves recorded for a Au–S–(CH2)12–SH/Hg tunnelling
junction at a constant bias voltage E = 0.4 V.7 The electrochemical
potentials of the electrodes are as follows: (A) EHg = 20.8 V; EAg = 20.4
V; (B) EHg = 21.2 V; EAg = 20.8 V.
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As shown in Fig. 3, all investigated monolayers follow
essentially the relationship predicted by eqn. (1) with tunneling
coefficient b = 1.05 ± 0.01/CH2 for monolayers A, b = 1.02 ±
0.06/CH2 for monolayers B and b = 0.82 ± 0.01/CH2 for
monolayers C. To properly interpret the data presented in Figs. 2
and 3 one must realize that before the formation of a tunneling
junction both electrodes are covered with ions and water due to the
build-up of the electrical double layer. However, as we have shown
previously for Hg–(n-alkanethiol bilayer or monolayer)–Hg junc-
tions, these ions as well as water molecules are expelled from the
junction area in the course of its formation.3a We point out that the
current across n-alkanethiol monolayer does not depend on the
potential of the Hg drop. Thus the interlayer structure between the
Hg surface and the monolayer does not depend on the potential
unless the chemical bond is formed.10 Fig. 3 indicates that an a,w-
alkanedithiol monolayer for EHg < EA behaves identically to the
well known n-alkanethiol monolayers.3 On the other hand, the
values of tunneling current for a,w-alkanedithiol for EHg > EA are
not only substantially higher but they also produce different
tunneling coefficient, b. This effect might be explained, in part, by
the change of distance between the Ag and Hg surfaces due to the
chemical reaction between terminal –SH group and Hg surface.

The lengths of Hg–S and H–S bonds are equal to 1.1 Å and 1.3
Å respectively. The distance between the terminal –H atom and the
surface of mercury is expected to be smaller than 2 Å.11

Consequently the difference in length between the “–CH2–S–Hg”
and the “–CH2–S–H/Hg” structures should be in the order of 2.2 Å.
In view of eqn. (1), this difference in distance should produce ca. 9
fold difference in tunneling current.12 This is clearly less than the
observed ca. 90 fold difference for tunneling junctions containing
a,w-docosanedithiol.

A similar effect was recently observed by Lindsay and coworkers
for conductivities of a,w-alkanedithiol measured using conductive
probe–atomic force microscopy.2c,d These authors postulate that
the energy difference between the Fermi level and the molecular
orbital that mediates tunneling is different in a molecule connected
at both ends to the metallic contacts compared to a molecule
chemically connected to the electrode at one end only. For the fully
bonded systems, the overall increase in conductivity is combined
with smaller values of the tunneling coefficient and in turn with
smaller height of the tunneling barrier.

Finally, we would like to emphasize that the presented analysis
does not account for any possible changes in the conformation of
hydrocarbons upon the reaction of terminal –SH group with Hg. We
point out however that such a change would likely result in a
disorder of hydrocarbons within the monolayer thus causing overall
decrease (and not an increase) of electronic coupling.3c

In conclusion, our experimental results strongly support the
hypothesis that the relative energy of the molecular orbitals

mediating electron tunneling strongly depend on whether the
molecule is fully bonded into the electrical circuit thus emphasizing
the importance of contact in molecular electronics.
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Fig. 3 Logarithm of the current density vs. number of atoms in tunnelling
junctions: (A) a,w-alkanedithiols, EHg = 21.2 V; EAg = 20.8 V; (B) n-
alkanethiols, EHg = 20.8 V to 21.2 V; EAg = 20.4 V to 20.8 V, bias
voltage E = 0.4 V; (C) a,w-alkanedithiols, EHg = 20.8 V ; EAg = 20.4
V.
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