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Co?+-Exchanged faujasite zeolites can efficiently catalyze the
epoxidation of styrene with molecular oxygen, and the Co?* ions
located in supercages are suggested to account for the activation
of O, for the epoxidation of styrene.

Molecular oxygen isthe most desirable oxidant for the epoxidation
of akenes with respect to environmental and economic considera-
tion. However, little success has been achieved for the selective
epoxidation of alkeneswith O, except for ethylene. Cobalt ionsand
complexes are well-known catalysts for the selective oxidation of
alkanes and akylbenzenes with O,.1 Cobalt complexes have also
been used for the epoxidation of alkenes with tert-butyl hydro-
peroxide and iodosylbenzene,2 but the studies on exploitation of
cobalt catalysts for the epoxidation of alkenes with O, as oxidant
are scarce. The autooxidation of alkenes in O, with the first-row
transition metal compound typically resulted in a high degree of
oxidized polymers as well as cleaved products.3 Drago and co-
workers reported the catalytic oxidation of termina olefins
including styrene by O, to the corresponding 2-ketones and
2-alcohols using a cobalt(ir) complex,4 but no styrene oxide was
observed. Cobalt salen complexes were reported to show catalytic
activity for epoxidation of styrene with O,, but a sacrificial co-
reductant, isobutyraldehyde, was necessary.5 Recently, CoCl, was
investigated for the oxidation of monoteroenes with O,, and it was
found that the alylic oxidation proceeded dominantly.6 Severa
heterogeneous cobalt catalysts have been applied for the selective
oxidation of akanes, especialy cyclohexane, ™11 but very few
contribute to the development of heterogeneous catalysts for
epoxidation of alkenes with 0,.12.13 Recently, we found that Co2+-
exchanged molecular sieves could catalyze the epoxidation of
alkenes with O, in the absence of a co-reductant. Here, we report,
for thefirst time, the catalytic performances of the Co2*-exchanged
faujasite zeolites for the epoxidation of styrene with O,.

All the parent zeolites used in this work were prepared via
hydrothermal synthesis and their structures were confirmed by
XRD. Cobdt ions were introduced into the zeolites by ion-
exchange in aqueous solution of Co(NO3), for 24 h at temperatures
from 298 to 373 K depending on the zeolites. After filtration, and
thorough washing with deionized water, the samples were dried at
313 K in vacuo for 24 h, and the dried powders were used as
catalysts, unless otherwise stated. The cobalt content in each
sample was determined by atomic absorption spectroscopic
analysis. The epoxidation of styrene was carried out using a batch-
type reactor operated under atmospheric pressure. In a typical
reaction, a measured amount of catalyst was added to a glass flask
pre-charged with the reactant (styrene) and the solvent, typically
N,N-dimethylformamide (DMF). The reaction was started by
bubbling O, into the liquid. After reaction for 4 h, the catalyst was
filtered off, and theliquid organic products were quantified by agas
chromatograph with acapillary column, using toluene as an internal
standard.

The catalytic performances of the Co?+-exchanged X zeolite
samples with different cobalt contents are shown in Fig. 1. In these
experiments, the catalyst weight was kept at 0.2 g. Styrene oxide
and benzaldehyde were the two main products along with minor
quantities of styrene glycol, benzoic acid and mandelic acid. NaX
zeolite without cobalt was almost inactive for the oxidation of
styrene, strongly suggesting that cobalt was responsible for the
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epoxidation of styrene with O,. Styrene conversion increased
proportionally with an increase in the cobalt content in the sample,
while styrene oxide selectivity and the turnover number remained
almost the same simultaneously. This result further suggests that
the cobalt in the zeolite functions as active sites for the epoxidation
of styrene with O..

The catalytic properties of various Co-containing samplesfor the
oxidation of styrene with O, are compared in Table 1. The weight
of catalyst used wasregulated in each run to keep the Co amount the
same (0.299 mmol). It should be noted that Co2* ions in the liquid
phase added as either Co(NOs), or Co(Ac), were inactive for the
epoxidation of styrene. The CoO,/SiO, and CoO,/NaX samples
prepared by the conventional impregnation method could also
catalyze the epoxidation of styrene with O,, but styrene conversion
was remarkably lower than for the Co2+-exchanged X zeolite. Thus
the cobalt ions, which are highly dispersed in the zedlite, played a
key role in the catalysis of epoxidation. The comparison among
different types of Co2+-exchanged zeolites reveals that the Co2+-
exchanged Y zeolite shows similar catalytic performances to Co2+-
exchanged X zeolite, and both exhibit much higher styrene
conversion than other Co2+-exchanged zeolites. Since the window
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Fig. 1 Catalytic performances of the Co2*-exchanged X zeolite samples
with different cobat content: (@) styrene conversion, (M) epoxide
selectivity, (O) turnover number. Conditions: T = 373K styrene, 10 mmol;
DMF, 20 ml; flow rate of O, 3.0 ml min—1.

Table 1 Cataytic performances of Co-containing samples for the
epoxidation of styrene with molecular oxygen

Styrene Epoxide Turnover
Catalyst conv. (%) select. (%)  no.
Nax 0.32 42.3 -
Co(Ac)2 0.40 0 0.12
Co(NOs), 0.90 0 0.27
Co2*+-X (8.8 wt%) 44.2 60.0 13.2
Co2*-X (8.8 wt%)2 45.0 65.0 134
Co2*-Y (6.2 wt%) 453 62.3 135
Co2*-L (4.3 wt%) 18.2 53.7 4.4
Co2*-mordenite (2.9 wt%)  15.9 51.7 4.0
Co2*-beta (1.4 Wt%) 259 47.6 7.2
Co0,/SIO, (8.8 wt%) 24.9 60.1 6.8
CoO,/NaX (8.8 wt%) 30.1 58.9 9.0

Conditions: the amount of Co2* in each catalyst except for NaX, 0.299
mmol; T = 373 K; styrene, 10 mmol; DMF, 20 ml; flow rate of O, 3.0 ml
min—1. a2 Repeated run after three reaction cycles.
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size of faujasite zeolites is comparable to that of mordenite and
zeolite beta, the particular location of cobalt ions in the faujasite
zeolites, or their particular porous structure with supercages may
account for their high activity. Several other transition metal ions,
such asin Mn2+-, Ni2*-, Cu2+*-, Zn2*- and Cr3+-exchanged X zeolite
samples, were also investigated for the epoxidation of styrene with
O,, but styrene conversion and styrene oxide selectivity were both
remarkably lower than those for the Co2+-exchanged samples.
Therefore, the Co2*-exchanged faujasite zeolites are unique for the
epoxidation of styrene with O,.

It has been confirmed that no leaching of Co2* from the Co2+-
exchanged X zeolite occurs during the reaction. The cobalt content
in the sample after severa reaction cycles did not change, and
cobalt could not be detected in the filtrate after the reaction. No
significant conversion of styrene was observed when the liquid
filtrate was used instead of the solid catalyst for further reaction.
Furthermore, the repeated use of the Co2*-exchanged X zeolite did
not show any decrease in the catalytic activity (Table 1). These
observations strongly suggest that the reaction proceeds heteroge-
neously over the catalyst.

A change in the calcination temperature was found to exert an
influence on the catalytic performances for the Co2*-exchanged X
zeolite samples (Table 2). The sample dried at 313 K in vacuo
without calcination exhibited the highest styrene conversion. An
increase of the cal cination temperature gradually decreased styrene
conversion and thus the turnover number. It is known that the Co2*
ions exchanged in faujasite zeolites may migrate from the
supercagesto the sodalite cages and further to the hexagonal prisms
with an increase in the calcination temperature.14 Therefore, the
results in Table 2 suggest that the Co?+ ions located in the
supercages of faujasite zeolites are responsible for the epoxidation
of styrene with O,

Oxygen has been found to be crucia for the epoxidation reaction
catalyzed by the Co2*-exchanged faujasite zeolites. No reaction
occurred without bubbling oxygen to the liquid, and the conversion
of styreneincreased proportionally with the pressure of O, (Fig. 2).
Hydrogen peroxide, tert-butyl hydroperoxide (TBHP) and NaClO
have also been applied for the epoxidation of styrene using the
Co?+-exchanged X zeolite sample. Although epoxide could be
obtained, it is of interest that styrene conversion or styrene oxide
selectivity with these oxidants were remarkably lower than those
with O, (Table 3). The rapid decomposition of H,O, over the
catalyst may be responsible for the lower activity and selectivity
with H20,. On the other hand, TS-1, a well-known epoxidation
catalyst, showed higher activity and selectivity for the epoxidation
of styrene with H,O, but almost no activity with O..15 Therefore,
oxygen species derived from the activation of O, by the Co?+ sites
in the supercages probably account for the epoxidation of styrene.
Further investigations have revealed that the solvent is also
important for the epoxidation reactions. It isfound that the solvents
with higher polarity such as DMF and N,N-dimethylacetamide
show higher conversion of styrene while those with lower polarity

Table 2 Influence of the calcination temperature on the catalytic
performance of the Co2+-X (8.8 wt%) sample for the epoxidation of styrene
with molecular oxygena

Styrene Epoxide Turnover
Temp./K conv. (%) select. (%) no.
313 44.2 60.0 132
393 37.2 55.5 10.8
573 354 62.5 104
673 314 61.1 9.2
823 25.8 68.4 7.2

a Conditions are the same with those in Table 1.
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Fig. 2 Effect of O, pressure on catalytic performances of the Co2*-X (8.8
wt%) sample for the epoxidation of styrene: (@) styrene conversion, (O)
epoxide selectivity. Conditions: T = 373 K; styrene, 10 mmol; DMF, 20 ml;
total flow rate, 6.0 ml min—1 (O, was diluted with N»).

Table 3 Comparison of different oxidants for the epoxidation of styrene
using the Co?*-X (8.8 wt%) sample

Styrene Epoxide Turnover
Oxidant conv. (%) select. (%) no.
02 44.2 60.0 13.2
H,0,P 20.6 55.5 6.2
TBHPe 73.9 12.2 24.8
NaClOd 2.6 27.1 0.87

a Reaction conditions are the samewith thosein Table 1. ® Adding 9.7 mmol
H,0, instead of bubbling O,. ¢ Adding 10 mmol TBHP instead of bubbling
O,. d Adding 10 mmol NaClO instead of bubbling O..

such as chlorobenzene give much lower conversion. The nature of
the role of solvent and the oxygen species are under investiga-
tion.

In conclusion, we have found that the Co2* ions exchanged in
faujasite zeolites show unique heterogeneous catal ytic propertiesin
the epoxidation of styrene with O, in the absence of sacrificia
reductant.

This work was supported by the NSF of China (Nos. 20021002
and 20373055) and the Chinese Ministry of Science and Technol-
ogy (No. G1999022408).

Notes and references

1 R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidation of Organic
Compounds, Academic, New York, 1981.

2 J. D. Koolaand J. K. Kochi, J. Org. Chem., 1987, 52, 4545.

3 J. E. Lyons, ACS Adv. Chem. Ser., 1974, 132, 64.

4 A.Zombeck, D. E. Hamilton and R. S. Drago, J. Am. Chem. Soc., 1982,
104, 6782; D. E. Hamilton, R. S. Drago and A. Zombeck, J. Am. Chem.
Soc., 1987, 109, 374.

5 B. Rhodes, S. Rowling, P. Tidswell, S. Woodward and S. M. Brown, J.
Mol. Catal. A, 1997, 116, 375.

6 M. J.daSilva, P. Robles-Dutenhefner, L. Menini and E. V. Gusevskaya,
J. Mol. Catal. A, 2003, 201, 71.

7 G. Sankar, R. Rgjaand J. M. Thomas, Catal. Lett., 1998, 55, 15.

8 J. M. Thomas, R. Ragja, G. Sankar and R. G. Bell, Nature, 1999, 398,
227.

9 |. Belkhir, A. Germain, F. Fgjulaand E. Fache, J. Chem. Soc., Faraday
Trans.,, 1998, 94, 1761.

10 A. F. Masters, J. K. Bedttie and A. L. Roa, Catal. Lett., 2001, 75,
159.

11 J. M. Thomas and R. Rgja, Chem. Commun., 2001, 675.

12 J. M. Thomas, Angew. Chem,, Int. Ed., 1999, 38, 3588.

13 D.Dhar, Y. Koltypin, A. Gedanken and S. Chandrasekaran, Catal. Lett.,
2003, 86, 197.

14 H. Praiaud and G. Coudurier, J. Chem. Soc. Faraday Trans. |, 1979, 75,
2601.

15 V. R. Choudhary, N. S. Patil and S. K. Bhargava, Catal. Lett., 2003, 89,
55.

Chem. Commun., 2004, 440-441

441




