A mild and efficient procedure for α -bromination of ketones using N-bromosuccinimide catalysed by ammonium acetate

Kiyoshi Tanemura,**a Tsuneo Suzuki,*a Yoko Nishida,*a Koko Satsumabayashi*a and Takaaki Horaguchi*b

- ^a School of Dentistry at Niigata, The Nippon Dental University, Hamaura-cho, Niigata 951-8580, Japan. E-mail: tanemura@ngt.ndu.ac.jp; Fax: +81 25 267 1134
- ^b Department of Chemistry, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181, Japan

Received (in Cambridge, UK) 11th November 2003, Accepted 6th January 2004 First published as an Advance Article on the web 28th January 2004

Cyclic ketones reacted with N-bromosuccinimide (NBS) catalysed by NH₄OAc in Et₂O at 25 °C to give the corresponding α -brominated ketones in good yields, while acyclic ketones were efficiently brominated in CCl₄ at 80 °C.

As α -bromoketones are highly useful synthetic intermediates, α -bromination of ketones is an important transformation in synthetic chemistry.\footnote{1} The most commonly used reagent for this purpose is molecular bromine in the presence of protic or Lewis acids.\footnote{2} However, the monosubstituted product is often accompanied by a small amount of the disubstituted product in the presence of an excess of the ketone.\footnote{2}.\footnote{3}

In terms of ease of handling and availability, N-bromosuccinimide (NBS) is a superior brominating reagent.^{4,5} It has been reported that ketones are α -brominated by reactions with NBS initiated by azobisisobutyronitrile (AIBN) or dibenzoyl peroxide (BPO) in refluxing CCl_4 .⁶

Recently, Das *et al.* reported the deprotection of aromatic acetates using NH₄OAc as a neutral catalyst, but the mechanism was not mentioned.⁷ We were interested in the properties of NH₄OAc and planned to generate Br₂ and HBr by the redox reactions between NBS and NH₃, which was generated by the dissociation of NH₄OAc.

Here we report that various ketones react with NBS in the presence of the neutral catalyst, NH₄OAc, to give the corresponding α -monobrominated ketones in good yields.

First, 4-*tert*-butylcyclohexanone (1) was chosen as a model for bromination. Compound 1 was treated with 1.05 equiv. of NBS in the presence of 10 mol% of NH₄OAc at 25 °C in various solvents. The results are shown in Table 1. In CCl₄, the reaction completed within 0.5 h to give α -brominated product 2 in 71% yield together with the recovery of 1 (17%) (entry 1). The reactions in CHCl₃, CH₂Cl₂ and CH₃CN required longer reaction times and unreacted 1 remained (entries 2, 3 and 6). In Et₂O, bromination completed within 0.5 h to give 2 in 92% yield (entry 4). The reaction in THF gave 3 (60%) as well as 2 (26%) (entry 5). In MeOH, 2 (43%) and acetal 4 (57%) were yielded (entry 7). The most effective solvent was Et₂O for the bromination of 1. Reactions in Et₂O require cooling with water in order to avoid sudden boiling of the solvent.

Next, we examined the bromination of various cyclic ketones and the results are summarized in Table 2. Cyclic ketones reacted with 1.05 equiv. of NBS in the presence of 10 mol% of NH₄OAc in Et₂O at 25 °C to give the corresponding α -monobrominated ketones in good yields. In all cases, the yields of dibromo derivatives were <1%. Cyclohexanone (5) was transformed to 2-bromocyclohexanone (10) in 87% yield (entry 2). Even when 2.1 equiv. of NBS was employed, monobromoketone 10 was obtained

Table 1 The reactions of 1 with NBS catalysed by NH₄OAc

Entry	Solvent	Time/h	Yield (%) ^a
1	CCl ₄	0.5	71 ^b
2	CHCl ₃	7	68^c
3	CH ₂ Cl ₂	56	53^d
4	Et ₂ O	0.5	92
5	TĤF	1	26^e
6	CH ₃ CN	7	75 ^f
7	CH ₃ OH	5	43g

^a Isolated yields. ^b 17% of **1** was recovered. ^c 19% of **1** was recovered. ^d 34% of **1** was recovered. ^e **3** was obtained in 60% yield. ^f 21% of **1** was recovered. ^g **4** was obtained in 57% yield.

in 78% yield together with 9% of 2,6-dibromocyclohexanone (**39**). In the case of 2-methylcyclohexanone (**6**), the more substituted position was brominated predominantly (entry 3).² Bromination of 3,4-dihydro-1(2*H*)-naphthalenone (**9**) led to the α -brominated ketone **15** in 99% yield (entry 6). When **9** was treated with NBS in the presence of AIBN or BPO in CCl₄ at 80 °C for 1 h, bromination occurred at the benzylic position exclusively to give 4-bromo-3,4-dihydro-1(2*H*)-naphthalenone (**40**) in quantative yield.

In the cases of acyclic ketones, heating at 80 °C in CCl₄ was necessary. The results are shown in Table 3. In all cases, the reactions proceeded smoothly to give the corresponding α -brominated ketones. Bromination occurred at the more substituted positions predominantly (entries 1–3).

Table 4 shows the bromination of β -keto esters. A mild method for the bromination of β -keto esters using NBS catalysed by Mg(ClO₄)₂ was devised recently.⁸ α -Monobromination of α -unsubstituted β -keto esters has been a challenging problem, since some compounds such as **34** and **36** were reported to be unstable and readily disproportionated to dibrominated and debrominated

Table 2 Bromination of various cyclic ketones^a

Entry	Substrate	Time/h	Products (Yield (%))
1	O I t _{Bu}	0.5	O Br 2 (92)
2	5	0.5	Br 10 (87)
3	6	1.5	93) Br 11 (93) Br 12 (2)
4	7	0.5	O Br 13 (81)
5	8	0.5	^O Br 14 (92)
6	9	1.5	Br 15 (99)

 a Reagents and conditions: Substrate 10 mmol, NBS 10.5 mmol, NH₄OAc 1 mmol, Et₂O 10 mL, temp. 25 °C.

Table 3 Bromination of various acyclic ketonesa

Entry	Substrate	Time/h	Products (Yield (%))	
1	016	0.5	O 21 (74) O Br22 (16)	
2	O 17	0.5	O 23 (65) O Br 24 (15)	
3	<u>0</u> 18	1	25 (70) Br 26 (10)	
4	19	0.5	27 (81)	
5	PhCOCH ₃ 20	3	PhCOCH ₂ Br 28 (84)	

^a Reagents and conditions: Substrate 10 mmol, NBS 10.5 mmol, NH₄OAc 1 mmol, CCl₄ 10 mL, temp. 80 °C.

Table 4 Bromination of various β-keto esters^a

Entry	Substrate	Solvent	T/°C	Time/h	Products (Yield (%))
1	OEt 29	Et ₂ O	25	1.5	O O O O O O O O O O O O O O O O O O O
2	Ph OEt 30	Et ₂ O	25	3	OEt 35 (92)
3	OCH ₂ Ph 31	Et ₂ O	25	3	O O O O O O O O O O O O O O O O O O O
4	OEt 32	CCl ₄	80	0.5	O O O O O O O O O O O O O O O O O O O
5	OEt 33	CCl ₄	80	1	O O O O O O O O O O O O O O O O O O O

 a Reagents and conditions: Substrate 10 mmol, NBS 10.5 mmol, NH₄OAc 1 mmol, solvent 10 mL.

products.^{8,9} α-Unsubstituted β-keto esters were treated with NBS catalysed by NH₄OAc in Et₂O at 25 °C to afford the corresponding α-brominating products in good yields (entries 1–3). α-Substituted β-keto esters reacted with NBS in the presence of NH₄OAc in CCl₄ at 80 °C to give the corresponding α-brominated β-keto esters (entries 4 and 5). Bromination of **33** afforded α-brominated β-keto ester **38** in 98% yield. Under Wohl–Ziegler bromination conditions (NBS, AIBN, CCl₄, 80 °C, 8 h), the generation of the desired product **38** (62%) was accompanied by ethyl 2-bromophenylmethyl-3-oxobutyrate (**41**) (18%) which was substituted at the benzylic position.

Chlorination or iodination of compound 1 using N-chlorosuccinimide (NCS) or N-iodosuccinimide (NIS) at 25 °C in CCl₄, Et₂O or CH₃CN did not occur. (**CAUTION**!: When NH₄OAc was added to a mixture of 1 and NIS in CH₃CN at 25 °C, an explosion occurred. It has been reported that explosive NI₃ is generated when I₂ is mixed with ammonia although explosive products of the present reaction are not clear. ¹⁰)

A possible mechanism for the generation of Br_2 and HBr is shown in Scheme 1. Since NH_4OAc is a salt which consists of a weak acid and a base, the behaviour of NH_4OAc in an organic solvent may be represented by the parallel equations shown in eqn. (1).¹¹ NH_4OAc is dissociated into NH_4^+ and OAc^- . Proton transfer from NH_4^+ to OAc^- affords NH_3 and HOAc. NBS may be reduced by NH_3 to give Br_2 , succinimide and N_2 (eqn. (2)). Reduction of Br_2 by NH_3 may lead to HBr and N_2 (eqn. (3)).

Supports for this mechanism may be provided by the following experiments. (i) Treatment of NBS with aqueous ammonia (25%) afforded Br₂, succinimide and N₂. The reaction of Br₂ with aqueous ammonia gave HBr and N₂. 12 (ii) When NH₄OAc was mixed with 1.0 equiv. of NBS in CCl₄ at 0 °C, the yellow Br₂–succinimide complex was precipitated with the formation of N₂ and CH₃COOH. The complex decomposed at 85–86 °C to give Br₂ and succinimide. 13 The ratio [Br₂]/[succinimide] = 0.2, which was determined by iodometric titration. The complex was soluble in Et₂O, CH₃CN, MeOH and H₂O to give Br₂ and succinimide, but not in CCl₄ and CH₂Cl₂. This complex can be used as a brominating agent. The reaction with cyclooctene in Et₂O at 25 °C gave 1,2-dibromocyclooctane (98%).

In conclusion, the present procedure provides a highly efficient method for α -monobromination of ketones. In addition, it is possible to carry out α -bromination of ketones without benzylic bromination.

A typical experimental procedure is as follows: to a mixture of 1 (10 mmol) and NBS (10.5 mmol) in dry Et_2O (10 mL) was added NH₄OAc (1 mmol). After stirring at 25 °C for 0.5 h, the mixture was filtered and the filtrate was washed with water, dried and evaporated. The residue was chromatographed (hexane–acetone = 10:1) on silica gel to give 2 (92%).

Notes and references

- H. O. House, Modern Synthetic Reactions, 2nd edn., W. A. Benjamin, New York, 1972, p. 459.
- 2 E. W. Garbisch, Jr., J. Org. Chem., 1965, 30, 2109.
- 3 K. E. Teo and E. W. Warnhoff, J. Am. Chem. Soc., 1973, 95, 2728.
- 4 K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi and T. Horaguchi, Chem. Lett., 2003, 32, 932.
- 5 A. C. Cope, E. P. Burrows, M. E. Derieg, S. Moon and W.-D. Wirth, J. Am. Chem. Soc., 1965, 87, 5452.
- 6 H. Schmid and P. Karrer, Helv. Chim. Acta, 1946, 29, 573.
- 7 C. Ramesh, G. Mahender, N. Ravindranath and B. Das, *Tetrahedron*, 2003, **59**, 1049.
- 8 D. Yang, Y.-L. Yan and B. Lui, J. Org. Chem., 2002, 67, 7429.
- R. V. Hoffman, W. S. Weiner and N. Maslouh, J. Org. Chem., 2001, 66, 5790; X.-X. Shi and L.-X. Dai, J. Org. Chem., 1993, 58, 4596.
- 10 J. W. Mellor, Comprehensive Treatise Inorganic and Theoretical Chemistry, vol. 8, suppl. 2, Longman, London, 1967, p. 416; G. G. Hawley, The Condensed Chemical Dictionary, 9th edn., Van Nostrand Reinhold Company, New York, 1977, p. 616.
- 11 A. W. Davidson and W. H. McAllister, J. Am. Chem. Soc., 1930, 52, 507
- 12 M. Grayson, Kirk-Othmer Concise Encyclopedia of Chemicla Technology, John Wiley and Sons, New York, 1985 (Japanese translation, Maruzen, Tokyo, 1988, p. 98).
- 13 Similarly, the colourless Cl₂-succinimide complex was isolated from the reaction of NH₄OAc with NCS in CCl₄ at 15 °C The complex decomposed at 98–107 °C to give Cl₂ and succinimide. The ratio [Cl₂]/ [succinimide] = 0.2. The complex was soluble in MeOH and H₂O to give Cl₂ and succinimide, but not in less polar solvents (CCl₄, CH₂Cl₂, CHCl₃, Et₂O and CH₃CN). The reaction with cyclooctene in MeOH at 25 °C gave 1-chloro-2-methoxycyclooctane (77%). The fact that chlorination of ketones using NCS and NH₄OAc did not proceed might be attributed to the high stability of the complex.