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Reaction of 2,5-diethynylpyridine with dimesitylborane,
[(Mes)2BH]2 (Mes = mesityl = 2,4,6-Me3C6H2), gave the
unexpected tris-hydroboration product 1-{(Mes)2B}-2-[Z-
1-{(Mes)2B}ethylidene]-5-[E-{(Mes)2B}vinyl]-1,2-dihydropyri-
dine, which has been structurally characterised by single-crystal
X-ray diffraction.

The vacant pz orbital on three-coordinate boron provides p-
acceptor character, leading to electron-poor compounds which
display interesting linear and non-linear optical (NLO) properties.1
Whilst unsymmetric compounds2–8 of the form D–X–BR2 (D = p-
donor, X = organic p-system, R = bulky aromatic group) display
second-order NLO behaviour,3,4 strong solvatochromism in their
fluorescence spectra,2–6 electroluminescence6,7 and two-photon
excited fluorescence,8 symmetric compounds9–12 of the form R2B–
X–BR2 display third-order NLO behaviour,10 can function as
fluoride ion sensors11 and as emitting and/or electron transport/
hole-blocking layers in organic light-emitting diodes.12

Two bulky mesityl groups (R) on boron generally provide
sufficient kinetic stability against hydrolysis, via steric shielding of
the vacant p orbital, to make the resulting compounds air stable.
Typical routes to the symmetric compounds are reaction of Li–X–
Li with 2 equiv. of (Mes)2BF, giving (Mes)2B–X–B(Mes)2,9,10 or
di-hydroboration of HC·C–X–C·CH (e.g. 1a, X = 1,4-C6H4;
Scheme 1) with [(Mes)2BH]2 (2),13 yielding E,E-(Mes)2B–
CHNCH–X–CHNCH–B(Mes)2 (e.g. 3a, X = 1,4-C6H4) with
excellent stereo- and regioselectivity.10 Chujo and co-workers14–16

have extended this approach, employing HC·C–X–C·CH with
[RBH2]2 (R = Mes or 2,4,6-iPr3C6H2) to provide electron-poor
oligomers or polymers of the form [–(R)B–CHNCH–X–CHN
CH–]n, and have reported luminescent14,15 and third-order NLO16

behaviour for the resulting materials. One example involved

hydroboration polymerisation of 2,5-diethynylpyridine15 (1b). In
order to carry out further photophysical studies of the simpler and
better characterised diboron compounds 3, we reacted 1b with 1
equiv. of 2, anticipating the formation of 3b (X = 2,5-pyr-
idinediyl); however, the reaction proceded via a different stoichio-
metry and provided an unusual and unexpected product.

Dropwise addition, under N2, of a solution of 1 mmol of 1b in
THF to a solution of 1 mmol of 2 in THF gave an orange solution,
which resulted in an orange powder‡ after removal of the solvent.
NMR spectra were complex, initially suggesting the presence of a
mixture of products. Column chromatography on silica gel, eluting
with hexane–acetone 9 : 1, produced a yellow–orange compound,
4‡, which still gave a 1H NMR spectrum that was more complex
than expected. A single-crystal X-ray diffraction study§ provided
the structure of 4 (Fig. 1 and Scheme 1). Whilst the 5-ethynyl group
meta to N was hydroborated, as expected, in a 1,2-anti-Markovni-
kov fashion, two other hydroboration reactions took place on the
other side of the molecule: (i) a formal 1,2-Markovnikov
hydroboration, placing boron on Ca and H on Cb, and (ii) a formal
1,4-hydroboration, placing boron on N and another H on Cb,
generating the 2-exo-a-borylethylidene function on the 1,2-di-
hydropyridine ring. The mechanism of the reaction is not yet clear,
but a few points are worth considering. Coordination of the pyridine
N to dimesitylborane to form intermediate A (Scheme 2) is likely,
as was observed for (Mes)2BF.17 In the latter case, subsequent

† Electronic supplementary information (ESI) available: NMR data for 4,
rotatable 3-D molecular structure diagrams of optimised geometries in
CHIME format and energy data for optimised geometries. See
http://www.rsc.org/suppdata/cc/b3/b316250h/

Scheme 1

Fig. 1 Molecular structure of 4 with thermal ellipsoids shown at 50%
probability, double bonds in solid black and hydrogen atoms omitted for
clarity. Selected bond distances (Å): N(1)–C(6) 1.409(2), N(1)–C(2)
1.451(2), N(1)–B(3) 1.453(3), C(2)–C(9) 1.367(3), C(9)–C(10) 1.507(3),
C(9)–B(2) 1.573(3), C(2)–C(3) 1.452(3), C(3)–C(4) 1.341(3), C(4)–C(5)
1.444(3), C(5)–C(6) 1.350(3), C(5)–C(7) 1.452(3), C(7)–C(8) 1.349(3),
C(8)–B(1) 1.546(3). Torsion angles (°): C(9)–C(2)–N(1)–B(3) 249.9(2),
C(31)–B(2)–C(9)–C(2) 242.4(3), C(9)–C(2)–C(3)–C(4) 2149.3(2), C(3)–
C(4)–C(5)–C(6) 212.9(3), C(6)–C(5)–C(7)–C(8) 2171.4(2), C(5)–C(7)–
C(8)–B(1) 172.1(2).
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attack by carbon nucleophiles (RLi) took place at the pyridine C
ortho to N, with elimination of F2 from B, leading to neutral
1-{B(Mes)2}-2-R-1,2-dihydropyridines (5). In our case, this could
lead to 1,5-hydride shift to the terminal carbon of the 2-ethynyl
moiety, giving propadiene B. A subsequent propadiene hydro-
boration would generally be expected to place boron at the terminal
carbon.18,19 However, a 1,3-boryl shift allows re-aromatisation of
the pyridine ring (intermediate C) and provides for the overall
observed 1,2-Markovnikov alkyne hydroboration. Coordination of
a second equivalent of (Mes)2BH to the pyridine N (intermediate D)
could be followed by another 1,5-hydride shift, yielding the final
product, 4. The mechanism in Scheme 2 is supported by ab initio
geometry optimisations on compounds A–D and 4 (X = H, R =
2,6-Me2C6H3). Total energies decrease from A to B to C, indicating
that the 1,5-H and 1,3-B shifts in the second and third steps in
Scheme 2 are thermodynamically favourable, and model compound
4 is substantially lower in energy than its isomer D.

The 1,2-dihydropyridine ring in 4 is, unusually, puckered; C(2),
C(3), C(4) and C(5) are coplanar within experimental error, but
N(1) and C(6) deviate from this plane by 0.52 and 0.27 Å,
respectively. The B(1) and B(2) atoms have trigonal-planar
geometries, whilst B(3) and N(1) are somewhat pyramidalised,
deviating from trigonal-planar geometries by 0.05 and 0.07 Å,
respectively. The twist of 19.5° around the B(3)–N(1) bond reduces
the n(N)?pp(B) overlap, resulting in a relatively long B–N length
of 1.453(3) Å. In 5 (RNPh),17 both B and N are planar. The B–N
distances in (Mes)2BNHPh20 and (Mes)2BNH2

21 are 1.407 and
1.375 Å, respectively. Only two structures with a C2B–NC2 moiety
(all atoms sp2 hybridised) have been reported previously: 1,1A-
bis(dimesitylboryl)-1,1A,4,4A-tetrahydro-4,4A-bipyridylidene (6)22

and (C6F5)2N–pyrrolylborane (7).23 Molecule 6 resembles 4 in the
twist around the B–N bond (18°) and its B–N length of 1.444(3) Å.
In planar 7, the B–N distance is only 1.401(5) Å. Clearly, the
geometry of 4 is influenced by severe steric interactions, evident
from the large C(9)–C(2)–N(1)–B(3) torsion angle of 2 49.9(2)°.

Three inequivalent B(Mes)2 moieties, one exhibiting restricted
rotation around the B–C and B–N bonds, and the methyl group on
the exo-ethylidene moiety account completely for the unexpected
complexity of the 1H NMR spectrum of 4.

A referee pointed out that hydroboration of pyridine is almost
unheard of; a recent case of formal 1,4-hydroboration24 and 1,2-
and 1,4-hydroalumination25 are rare relevant reports. Studies of
related reactions and derivatisation of the unusual products will be
the subject of future publications.
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Notes and references
‡ Crude yield 0.54 g (92%), purified yield after chromatography 0.35 g
(60%) based on boron. Analysis calc’d for C63H74B3N: C 86.21, H 8.50, N
1.60; found: C 85.47, H 8.84, N 1.46%. MS (EI): m/z 876 (M 2 1).
§ Crystal data for 4: C63H74B3N·1.5C3H6O·0.5C6H14, yellow block (0.31
3 0.23 3 0.11 mm) grown from hexane–acetone, M = 1007.87, triclinic,
space group P1̄ (no. 2), a = 13.256(4), b = 13.735(4), c = 17.298(5) Å, a
= 94.48(1), b = 94.62(1), g = 101.60(1)°, V = 3060.7(16) Å3, Z = 2, m
= 0.06 mm21, T = 120(2) K, APEX CCD area detector, Mo-Ka radiation,
l = 0.71073 Å, 32 023 reflections (14 008 independent, Rint = 0.075),
SHELXTL software, least-squares refinement against F2, final R = 0.062
[7596 reflections with F2 > 2s(F2)], R(F2) = 0.175 (all data). The acetone
and hexane molecules of crystallisation are highly disordered. CCDC
226864. See http://www.rsc.org/suppdata/cc/b3/b316250h/ for crystallo-
graphic data in CIF or other electronic format.
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